BASIC MANUAL

Contents

Introduction -

BASIC . PROGRAMMING

Chapter

Start Here

Calculating in BASIC
Planning a Program
Writing a BASIC Program
Loops .

Subroutines

Vectors

Strings

Reading and Writing Data
Special Jobs

The Machine

More Space and More Speed
What to do if Baffled

REFERENCE SECTION

Chapter 14
15
16
17
18

Extending the BASIC :
'BASIC Statements, Functions and Commands
BASIC Characters and Operators

Syntax Definition

Error Codes

11
17
23
31
35
41
51
61
71
75

95

99
105
115
121
125

Q&,_AJQUWQ

Introduction - intro 28/7/80

This manual explains how to use Acorn's 4k integer BASIC interpreter.
The manual is arranged in two sections. If you have never programmed
before you should read the BASIC section starting from Chapter 1; but
be warned that you are setting off on an adventure which may require
some changes of attitude towards computers. The only way to learn the
art of programming is by practice, and so every section of this manual
includes many example programs which illustrate the concepts being
explained. These should be typed in and tried out, even if at first
you do not fully understand how they work. By the end of chapter 4 you
will be able to write your own programs for many different types of
problem, and you may wish to stop there. The subsequent chapters, 5 to
12, deal with progressively more advanced features of Acorn BASIC.

- If you have already programmed in BASIC you may prefer to turn to
the reference section; this contain a complete summary of all the
BASIC statements, functions, commands and operators. You will be
pleased to discover a number of extensions in Acorn BASIC that are not
found in other BASICs.

Acknowledgements

- The preparation of this manual would not have been possible without
the continuous assistance of everyone at Acorn. In particular thanks
are due to David Johnson-Davies for writing chapter outlines and
writing many of the chapters; to Laurence Hardwick for testing the
example programs and writing sections about the teletext VDU and to
the many people who provided comments on previous drafts of the
manual.

The following example programs were provided by Roger Wilson:
Tower of Hanoi, Eight Queens, Prime Numbers, Arbitrary Precision
Powers, Day of Week, Lissajou patterns and Renumber; and the following
by Nick Toop: Simultaneous Egquations and Encoder/Decoder.

The manual was prepared and edited on Acorn System Threes and
System Fours, and the final artwork was prepared using the Acorn Text
Processing Package.

HdTTIIIS SISV Eddd

™.

Chapter 1 -~ cl 28/7/80

1.0 START HERE

The BASIC interpreter occupies memory between addresses #C000 and
#D000, and it should be entered at #C2B2. It requires one of the Acorn
Operating Systems to handle the various devices attached to the
computer. If you have BASIC in ROM, you should enter it by typing

GO C2B2
if you héﬁexg‘DOS. With a COS you can type
BASIC

and the COS will enter the interpreter at #C2B2. If you have BASIC on
cassette, you can enter

RUN "BASIC" | |
to your COS to get it to load BASIC and enter it at §C2B2. If you have
'BASIC on disk, you can enter one of

RUN "BASIC"
RUN BASIC
BASIC

to get BASIC loaded and enter it at #C2B2. If you wish to save BASIC
on cassette or disk, a suitable command is '

SAVE “BASIC”‘COOO D000 C2B2

for either COS or DOS. The interpreter uses addresses in page 0 up to
#0060, all of page 1 and between #0240 and #03FF for working values.
When initially entered it expects RAM at #3000 for text to be stored

in, but this can be changed.

When you first enter BASIC at #C2B2, it will .just type a '>' and
wait. The '>' sign is called BASIC's ‘prompt'. It indicates that the
interpreter is waiting for something to be typed in, a command,
perhaps, or a program. . '

‘1.1 What BASIC Can Do

~ Acorn BASIC understands the following'special words and ‘symbols:

Commands
LIST, LOAD, NEW

Functions
ABS, BGET, CH, COUNT, EXT, FIN, FOUT, GET, LEN, PTR, RND, TOP

Connectives _
AND, OR, STEP, THEN, TO.

Statements

- BPUT, DO, END, FOR, GOsUB, GOTO, IF, INPUT, LET, LINK, NEXT, PRINT,

PUT, REM, RETURN, RUN, SAVE, SGET, SHUT, SPUT, UNTIL

Operators
! #, S5, %, &, *, t¢ "1 [r T <e T > 24 lr <>, <=, »>=

I

These words and symbols will be explained over the course of the next
12 chapters; for the moment just observe that many of +hese words have

an cbvious meaning; for example, try typing:

PRINT "HELLO"

after the '>' prompt sign. Note that the quotatieh'marks are obtained
by holding down the SHIFT key and typing the '2° gey. Now type RETURN
to indicate that the line is finished, and BASIC will do just that:

HELLO>
7o perform calculatiens you just need to type PRINT followed by the
expression you want to evaluate. FOT example, trys

PRINT 7+6%2

When you type RETURN the answer will be printed out. You can try
typing anything you 1ike, but any words not_on the above lists will
probably cause an error. For example, try typing?

HELLO |
after BASIC's '>' prompt. BASIC will reply by printing:
Exrror 94

which means that HELLO is not one of the gtatements oOr commands that
the ATOM understands.

1.2 A Demonstration

Here is a quick demonstration of some more complicated things that
BASIC can do. No attempt 1s made here to explain how these examples
work; for that you will have to read the rest of this manual.

vou can make BASIC do a lot of typing with very little effort; try
entering:

po PRINT "Acorn BASIC "; UNTIL 0

Note the difference petween the 'O' of DO, which is the letter 'O
and the '0' at the end of the statement, which is the digit '0' on th
top row of the keyboard. You will have to type the ESC {escape) key
which is at the top left of the keyboard, to stop this program.

Now try typing in the following line:

DO PRINT $RND&3+8,$8,"*“; UNTIL 0

you will need to use the SHIFT key to get some of the special symbols
Again, you will have to type ESC to stop this program. 1f you want |
1et BASIC greet people, try:

po INPUT'"Who are you “$TOP;PRINT"“Hello “$TOP";UNTIL 0
Or you may want to impress by generating incomprehensible numbers:
@=20;D0 PRINT RND;UNTIL 0

You may guestion the usefulness of these examples, but they
il1lustrate the wide range of different tasks that BASIC is capable @
These 'programs’ all fitted on two lines of the display: to see wh
you will be able to do with a longer program take a look at the me
examples later on in this manual.

o

g VR R

Jid

1.3 The Keyboard
BASIC makes special use of some of the keys on the keyboard, which are

-very similar to the way the operating system uses them. There are,
however, some extensions, so they are all listed here.

1. 3-1 RETURN

The RETURN key is a signal to the computer that you have finished
typing in a line of characters. The cursor will move to the start of
the next line, and the computer may respond to what you have typed by
typing out a reply.

1.3.2 Control — CTRL X

Typing X while holding down the CTRL key will cancel the whole of the
current line and put the cursor at the start of the next new line.

1.3.3 ESC

The ESC key will stop the interpreter, and return it to the command
mode where it will type a '>' again. ESC should get you out of all
simple looping programs, but there are some situations when the BREAK
key must be pressed to reset the computer. If you need to press BREAK,
you can immediately re-enter the interpreter at the 'warm start' of
#C2C2. If you enter at the 'cold start', you can recover your text by
typing:

?#3001=0;END

' 1.3.4 General Characters

BASIC keywords (those giVen above) must be specified in upper case.
Any other characters may be typed in either case, and in this manual
will usually be given in lower case.

1.4 Storing Text

Any line typed after BASIC's '>' prompt which starts with a number is
not executed, but stored as text in memory. Any .type of input can be
stored in this way; it could be the text of a document, a program, or
data for a program. This section shows how to enter a piece of text,
which can then be stored, edited, or output to a printer. The same
method is used for entering a program.

The line must start with a line number, which can be any number
within the range 1 to 32767, and there is no need to use consecutive
liner numbers for consecutive lines; indeed, it is wise to choose line
numbers spaced by about 10 as you will soon realise. After the line
number you should type the line of text. For example, enter the
following:

10In Xanadu did Kubla Khan

20A stately pleasure-dome decree,
30Where Alph, the sacred river, ran
40Down to a sunless sea.

‘Remember to type RETURN at the end of each line. Each line can consist

of up to 64 characters; if you try to type more than 64 characters

~BASIC will refuse to proceed until you have deleted some characters.

The reason for spacing line numbers somewhat apart is that it is
then a simple matter to insert new lines between existing lines. For
example, to insert a line before line 40, type:

36Through caverns measureless to man

‘The computer will sort the lihes into the right order, according !
their line numbers, irrespective of the order in which you enter
them.

1.5_c°mhands

. Commands typed in after the '>' prompt, without a preceding li
number, and followed by RETURN, are executed immediately by BAS
rather than being stored in its memory. For example, now type t
command:

LIST
This will cause the stored text to be typed out:

10 In Xanadu did Kubla Khan

20 A stately pleasure-dome decree,

30 where Alph, the sacred river, ran
36 Through caverns measureless to man
40 Down to a sunless sea.

Note that:BASIC has. printed out a space after each line number, ev
though you did not type one in. This is to make the output look nice
There are several options available with the LIST command:

LIST 10 will list line 10 only

LIST 20,40 will list lines 20 to 40 inclusive
. LIST 20, will list line 20 onwards

LISsT ,30 - will list up to line 30.

A listing'can be stopped by typing ESC {escape).

1.6 Editing _ -

One powerful feature of BASIC's text and program storage is tl
‘stored lines can be modified very simply by typing the same 1.

number followed by the new version. For example, to change line 20
the text just type: .

' 20New line two

and try listing the program again to see the effect. .
' 7o delete a line simply type the line ‘number followed by RETURN

1.6.1 Screen Editing

- To Change a line With-just.a minor error in it, it is covenient to
the screen editor function provided by the operating system. There
five control keys which do the following jobs:

- CTRL-A move cursor left

CTRL-S move cursor right
CTRL-2 move cursor down

CTRL-W move cursor up . _
CTRL-Q read character at cursor.

For'éxample, suppose we wanted to edit a piece of stored text. Fi
' the text is listed as shown:

>LIST N | |
10 PIECE OF TEXT MATERIAL
> |

Py

JIJVTTISSTTTTESTTSTSdVIvadidiadiyd

After listing the program the cursor is positioned after the prompt,
as shown. First move the cursor vertically upwards, using the CTRL-W
function, until it is opposite the line we wish to edit:

>LIST _
_ 10 PIECE OF TEXT MATERIAL
> .

Now use the CTRL-Q function td_read the line number:

>LIST
10_PIECE OF TEXT MATERIAL
5 .

-Now skip over the space which BASIC printed out with a CTRL-S and use

CTRL-Q to read the characters which we want to keep:

>LIST - '
10 PIECE OF_TEXT MATERIAL
> .

Now type in the correction to the line:

>LIST

10 PIECE OF CAKE_MATERIAL
>

As no more of the old line is required the return key is pressed, and
the program may be listed again to verify that the editing gave the
correct result. '

The CTRL-S function may be used to omit parts of the old line that
are no longer required, and CTRL~-A may be used to backspace the cursor
in order to make room for inserting extra characters in the line.

If you change your mind while editing a line, type CTRL~X (cancel)

and the old line will be unchanged.

1.7 Other Commands
Some other useful commands are described here:

NEW will clear the stored text so that a new piece of text can be

typed in. It should always be typed before entering a new piece of
text.

?#3001=0;END can be typed after typing NEW or suffering a reset to

‘retrieve the text previously in memory. Note that you should only de
this if there is already text in memory. -

. 1.8 Errors _ .
- By now you will probably have been greeted by the message:
Exror X '

where X is the error code number. There are two possible reasons for
errors:

1. You typed something, probably a command, that BASIC was not
expecting or could not interpret '

2. BASIC was commanded to do somethingrthat it could not do.

‘For example, typing 'ABC' followed by a RETURN will give the error

message:

Errorx 94

which is probably the most common error; it means that 'ABC' was not a
legal command.

Remember that it is impossible to cause physical damage to your
Acorn computer, whatever you type at the keyboard. The worst you can
do is to lose the stored text, and even that is extremely unlikely.
Most errors are really warnings, and a complete explanation of all the
error codes is given in Chapter 18.

1.9 Saving Text or Programs

Having entered some stored text into the computer's memory, this
section will show how to save this text, and load it back at a later
time. '

Text and programs.are saved as memory images using the operating
system's memory to file transfer. The BASIC interpreter provides all
the addresses necessary for the operating system; all you have to do
is provide the file's name. File names can be anything containing up
to 16 characters for the current Cassette Operating System and. up to 7
characters for the current Disk Operating System. Guaranteed suitable
names are "FRED", "22/4/80", etc.

1.9.1 SAVE

First check that the stored text is still there by typing LIST. To
save the stored text to tape, type:

SAVE "EXAMPLE"

where "EXAMPLE" is the file name chosen for illustration. Type RETURN,
and the operating system will manage the rest of the file transfer in
its normal fashion. When the '>' prompt reappears, you are back in the
BASIC interpreter, and can proceed with your task. A word of warning:
if you are using the DOS, then no wait until completion has been
performed by the interpreter in order for it to get control back to
you as quickly as possible, so you should not destroy the text until
the disk transfer is over. '

1.9.2 Operating System — *

The * command allows you to ‘call any of the normal operating system
commands directly from BASIC, or even a BASIC program.

 *CAT

will give you a catalogue in the normal way.

1.9.3 LOAD

The LOAD statement 1is complementary to the SAVE statement, it will
reload the text into BASIC's current text space. To load EXAMPLE type:

LOAD "EXAMPLE"
and then typing:
LIST

will give a listing of the text that was previously saved. Note that
any BASIC text is position independant and may be loaded back into any
text area.

1.9.4 Errors when Using the 0s

If an error is found when using the operating system, the operating
system will print its own description of the fault, and then cause an

8

error, in order to return to whatever program had called it in a
fashion indicating an error., With BASIC, this will cause the
interpreter to print an Error message, with a code that has been
provided by the operating system. These error codes will be consistent
for any one particular operating system, but are not consistent over
the range of Acorn operating systems.

JIJVIVIEI STV IV dddiadddiddd

Chapter 2 ~ c2 28/7/80

2.0 CALCULATING IN BASIC

BASIC was invented in 1964 at Dartmouth College, New Hampshire, and it
stands for Beginner's All-purpose Symbolic Instruction Code. This
chapter introduces some of the facilities available in the BASIC
language.

The BASIC language consists of 'statements', 'operators' and
'functions'. The 'statements' are words like PRINT and INPUT which
tell the computer what you want to do; they are followed by the things
you want the computer to operate on.

The 'operators' are spec1a1 symbols such as the mathematlcal signs
'+' and '-' meaning 'add' and 'subtract'.

The 'functions' are words like the statements, but they have a
numerical value; for example, RND is a function which has a random
value. ' '

2.1 PRINT

This is by far the most useful BASIC statement; it enables programs to
print out the results of their calculations.
Try typing:
PRINT: 7+3
BASIC will print:
10>

The '>' prompt reappears immediately after the answer, 10, is printed
out. This is the best way to use BASIC as a simple calculator; type
PRINT followed by the expression you want to evaluate.

Try the effect of the following:

PRINT 7-3
PRINT 7*3
PRINT 7/3

You will discover that '*' means multiply; it is the standard multiply
symbol on all computers. Also '/' means divide, but you may be
surprised that the answer to 7/3 is given as 2, not 2 and 1/2. Acorn
BASIC only deals in whole numbers, or integers, so the remainder after
the division is lost. The remainder can be obtained by typing:

PRINT 7%3

The '%' operator means 'give remainder of division’.
More complex expressions are evaluated according to the standard
rules of mathematics, so the expression:

PRINT 2+3*4-5

has the result 9. Multiplications and divisions are performed first,
followed by additions and subtractions. Round brackets can be used to
make sure that operations are performed in the correct order; anything
enclosed in brackets is evaluated first. Thus the above expression
could also be written:

PRINT (2+{3*4)})-5

11

There is no limit to the complexity of expressions that BASIC can
evaluate, provided that they can be typed into the input line buffer.
You will notice that BASIC calculates extremely rapidly. Try typing:

PRINT 9*9*9*9*9*9*9*9*9
Acorn BASIC can calculate. with numbers between about 2000 million
and -2000 million, which gives an accuracy of between nine and ten

digits. Furthermore, because whole numbers are used, all calculations
in this range are exact.

2.1.1 Printing Several Things
_ You can print the results of several calculations ih one PRINT
statement by separating them with commas: '
PRINT 7, 7*7, 7*7*7, T*7*7*7
which will print out:
7 49 343 2401

Note that each number is printed out on the right-hand side of a
column five characters wide. This ensures that when large numbers of
results are printed out they will be in neat columns on the screen.

2.1.2 Printing Strings

PRINT cah also be used to print out words, or, indeed, any required
group of characters. Arbitrary groups of characters are referred to
simply as 'strings', and to identify the characters as a string they
are enclosed in double quotes. For example:

FRINT "The result"®
will cause:
The result>

to be printed out. The characters in quotes are copied faithfully,
exactly as they appear in the PRINT statement. Thus you could type:

PRINT "55*66=", 55%*66

where the expression inside quotes is a.string just like any other.
This would print out:

55*%66= 3630>

2.2 Variables - A to Z

You will probably be familiar Wlth the use of letters, such as X and
N, to denote unknown gquantities. E.g.: "the nth degree", "X marks the
spot", etc. In Acorn BASIC any letter. of the alphabet, A to Z, may be
~used to denote an unknown quantity, and these are called ‘variables’

The equals sign '=' is used to assign a particular value to a
variable. For example, typing:
_ X=6
- will assign the value 6 to X. Now try:
PRINT X

and, as expected, the value of X w1ll be printed out. Note the
dlfference between this and:

PRINT "X"

The assignment statement 'X=6' should be read as 'X becomes 6' because
it denoteées an operation which changes the value of X, rather than a

12

i

'«i!'&r‘lr&rﬂr&r&mr&r&r&r&r&r&rﬂr&r&r&r&r&mr&r&r&rﬂmrw

statement of fact about X. The following statement:
- X=X+1

is perfectly reasonable, and adds 1 to the previous value of X. In

words, the new value of X is to become the old value of X plus one.
Now that we can use variables to stand for numbers, they can also

be used in expressions., For example, to print ‘the first four powers of

12 we can type:

T=12
PRINT T, T*T, T*T*T, T*T*T*T

2.3 Getting the Right Answer
Suppose you wanted to calculate half of 777. You might type-
PRINT 777/2

and you would get the answer 388. Then, to get the remainder, YOU
would type: ' -

- PRINT 777%2

and the answer will be 1. So the exact answer 1s 388 and one half,.
Suppose, however, you deC1ded to try:

- PRINT 1/2*777

thinking it would give 'a half times 777', you would be surprised to
get the answer 0. The reason lies in the fact that the calculation is
worked out ‘from left to right in several stages, and at every stage
only the whole-number part of the result is kept. First 1/2 is
calculated, and the result is 0 because the remainder is not saved.
Then this is multlplled by 777 to give 0!

Fortunately there is a simple rule to avoid problems like this:

Do Divisions_Last!

The division operation is the only one that can cause a loss of
accuracy; all the other operations are exact. By doing divisions last
the loss of accuracy is minimised.

Applying this rule to the previous example, the division by two
should be dcne last:

PRINT (1*777)/2
which is obviously the same as what was written earlier.

2.3.1 FPixed-Point Calculations
An alternative way to find half of 777 is to imagine the decimal point

.moved one place to the right, and write:

PRINT 7770/2

The result will then be 3885, or, with the decimal point moved back to
the correct place, 388.5. For example, in an accounting program you
would use numbers to represent pence, rather than pounds. You could
then work with sums of up to 20 million pounds. Results could be-
printed out as follows:

PRINT R/100, " POUNDS", R%100, " PENCE"

2.4 Print Pield Size - '@!

Numbers are normally printed out right- justified in a field of five
character spaces. If the number needs more than five spaces the field
size will be exceeded, and the number will be printed in full without
any extra spaces. Note that the minus sign is included in the field

13

size for negative numbers.

It is sometimes convenient to alter the size of the print field.
The variable '@' determines this size, and can be altered for other
" field widths., For example: :

@=20

will print- all numbers in the right of a field of 20 spaces. This
value will ensure that all numbers are prlnted inside the fleld since
the maximum number of characters p0551ble is 11.

The value of '@' can be zero, in which case no extra spaces will
be inserted before the numbers.

2.5 Printing a New Line

A single quote in a PRINT statement will cause a return to the start
of the next line. Thus:

PRINT "A n [} “C " '_ llo"] ll'r " L] llnll]

will print out:

vBHOOD

This is an improvement over most other versions of BASIC, which would
require five separate - PRINT statements for this example. :

Z.GIHultiple—Statement Lines - ';°

Acorn BASIC allows any number of statements to be strung tdgether on
each line provided they are separated by semicolons. For example the
following line:

A=1;B=2;C=3;PRINT A,B,C"
will print:
1 2 3
2.7 Hexadecimal Numbers

Numbers can also be represented in a notation called 'hexadecimal'
which is especially useful for representing addresses in the computer.
Hexadecimal notation 1is explained in section 11.2; all that needs to
be mentioned here is that hexadecimal notation is just an alternative
way of writing numbers which makes use of the dlglts 0 to 9 and the
letters A to F. The '#'-symbol, called 'hash', is used to introduce a
hexadecimal number. Thus #E9 is a perfectly good hexadec1mal number
- (nothing to do with the .variable E). :

PRINT #8000
will print:,r
32768>
The PRINT statement prints the number out in decimal. A number can be

printed in hexadecimal by prefixing it with an '&' (ampersand) in the
PRINT statement. Thus:

PRINT &327_68)
will print: :

14

JIJV I VGBSV YV UdIdIdddddaadividdd

8000>

2.8 Logical Operations

In addition to the arithmetic operations already described, Acorn
BASIC provides three operations called 'logical operations': '&'
(AND), '|"'" (OR), and ':' (Exclusive-OR). These are all operations
between two numbers, so there is no danger of confusing this use of
's' with its use to specify printing in hex as covered in the previous
section. These are especially useful when controlling external devices
from a BASIC program.

The following table gives the results of these three operations
for the numbers 0 and 1: :

Operands | A&B A | B A :B

o ol
o olw
HooO
o
OHHO

Try typing the following:

PRINT 0 & 1
PRINT 1 | 1
PRINT 1 : 1

and verify that the results agree with the table.

2.9 Peeking and Poking

Many BASICs have PEEK and POKE functions which do the following:
PEEK looks at the contents of a place in memory, or memory location.
POKE changes the contents of a memory location.

The '?' operator, called 'query', is used for poking and peeking in
Acorn BASIC and it provides a more elegant mechanism than the two
functions provided in other BASICs,

The contents of some memory location whose address is A is given

by typing:
PRINT ZA

For example, to look at the contents of locgtion #C000 type:
PRINT 2#C000 !

and the result will be 60 (this is the first location in the BASIC
interpreter). :
To change the contents of a location whose address is A to 13 just

type:
?A=13

For example, try changing location 0 to 30
?20=30

and check it

PRINT 20
20

15

JIJITITISVTTITSTTIITd T d T idadid

Chapter 3 - c¢3 28/7/80

3.0 WRITING A PROGRAM

The first step in writing a program, whatever language it will
eventually be programmed in, is to express your problem in terms of
simple steps that the computer can understand.

An Acorn Computer could be put to an immense number of different
uses; anything from solving mathematical problems, controlling
external equipment, playing games, accounting and book-keeping,
waveform processing, document preparation ... etc. The 1list is
endless. Obviously all these applications cannot be included in a
computer's repertoire of operations. Instead what is provided is a
versatile set of more fundamental operations and functions which, in
combination, can be used to solve such problems.

It is therefore up to you to become familiar with the fundamental
operations that are provided, and learn how to solve problems by
combining these operations into programs.

Programming is rather like trying to explain to a novice cook, who
understands little more than the meanings of the operations 'stir',
'boil', etc., how to bake a cake. The recipe corresponds to the
program; it consists of a list of simple operations such as 'stir’',
'bake', with certain objects such as 'flour', 'eggs': '

Recipe 1. Sponge Cake

Mix together 4 oz. sugar and 4 oz. butter.
Stir in 2 eggs.

Stir in 4 oz. flour.

Put into tins.

Bake for 20 mins. at Mark 4.

Remove from oven and eat,

END

~ AR o DO
» ¢ # a

The recipe is written so that, prov1ded all the 1ngred1ents are
already to hand, the cook can follow each command in turn without
having to look ahead and worry about what is to come.

Similarly, a computer only executes one operation at a tlme, and
cannot look ahead at what is to come.

3.1 Flowcharts

Before writing a program it is a good idea to draw a 'flowchart'
indicating the operations required, and the order in which they should
be performed. The generally accepted standard is for operations to be
drawn inside rectangular boxes, with lines linking these boxes to show
the flow of control. A simple flowchart for the program to bake a cake
might be drawn as follows:

17

Mix together
4 oz. sugar
4 oz. butter

- ———— o ———————

——— i o o . g g, o ek

——————— T — o — — A S —

flour.

———————— T — o — . —_} ot S

——————ry " —t — A A . ———
—— e ————— ——— i o e

——— et it T AR o —— i ——

mins.

——— - — i o e i o — —

3.2 Decisions

Many recipes do not just contain a sequence of steps to be performed,
but contain conditions under which several different courses of actior
should be taken. For example, for a perfect cake line 5 would be
better written: :

5. Bake until golden brown.

i It would then be necessary to open the oven door every five minute:
and make a decision about the colour of the cake. Decisions are
represented in flowcharts by diamond-shaped boxes, with multiple exit:
labelled with the possible outcomes of the decision. The new flowchart
would then be: '

18

JUTTITTTTTT TSV 8dd

Mix together
4 oz. sugar
4 oz. butter

flour.

Bake for 5
mins.

/ Is \ no
<it brown >-————-——=
N 2 /
\ /
yes
END

The action ‘bake for 5 mins.' is repeatedly performed until the test
'is it brown?' gives the answer 'yes'. Of course the program would go
dramatically wrong if the oven were not switched on; the program would
remain trapped in a loop.

With these two simple concepts, the action and the decision,
almost anything can be flowcharted. Part of the trick in flowcharting
programs is to decide how much detail to put into the flowchart. For
example, in the cake program it would be possible to add the test 'is
butter and sugar mixed?' and if not, loop back to the operation 'mix
butter and sugar'. Usually flowcharts should be kept as short as
possible so that the logic of the program is not obscured by a lot of
unnecessary fine detail.

3.3 Counting

Recipes sometimes require a particular series of operations to be
performed a fixed number of times. The following recipe for puff
pastry illustrates this:

Recipe 2. Puff Pastry

1. Mix 6 oz. flour with 2 oz. butter.
2. Roll out pastry.
3. Spread with 2 oz. butter.

19

4. Fold in half.
5. Repeat steps 2 to 4 a further 3 times.

6. END

TIn this recipe the cook has to perform operations a total of 4 times.
A cook would probably keep a mental note of how many times he has
performed,these operations; for the sake of the flowchart it is
convenient to give the number of operations a label, such as T, The
flowchart of the puff pastry recipe would then be:

6 oz. flour
2 oz. butter

e e i e ey o 8
..p—_——_-——-_..-.—__.—.-_

e o . i e i i S

Spread with
2 oz. butter

-—.-.—.-___—_.—_.__._

e o v o o et i o S T

| Add 1 to T |
l
/ \ \
/ Is \ no
T = 4 >=wm——=="" /
\ ? /
\ /
yes
END

The loop consisting of statements 2 to 4 is performed 4 times; t
test at the end gives the answer '‘ho' for T=1, , and 3, and t

answer 'yes' for T=4. S

To perform an operation several times in a program an identi
method can be used; a counter, such as T, is used to count the numl
of operations_and the counter is tested each time to determine whet

enough operations have been completed.

3.4 Subroutines

A recipe may include a reference to another recipe. For example
typical recipe for apple tart might be as follows:

Recipe 3. Apple Tatrt

20

JIJVITVTTIVV VSISV TISUT ey Ididdd

. Peel and core 6 cooking apples.
Make pastry as in recipe 2.
Line tart tin with pastry.

Put in apple.

Bake for 40 mins. mark 4.

END

b W

To perform step 2 it is necessary to insert a marker in the book at
the place of the original recipe, find the new recipe and follow it,
and 'then return to the original recipe and carry on at the next
statement.

- In computer programming a reference to a separate routine is
termed a 'subroutine call'. The main recipe, for apple tart, is the
main routine; one of its statements calls the recipe for puff pastry,
the subroutine. Note.that the subroutine could be referred to many
times throughout the recipe book; in the recipe for steak and kidney
pie, for example. One reason for giving it separately is to save

- space; otherwise it would have to be reproduced for-every recipe that

needed it.

Note that in order not to lose his place, the cook needed a marker
to insert in the recipe book so that he should know where to return to
at the end of the subroutine. When using a program the computer keeps
d record of where you were when you call a subroutine, and returns you
there automatically at the end of the subroutine. In other respects,
the process of executing a subroutine on a computer is just like this

‘analogy.

3.5 Planning a Program

Before writing a program it is a good idea to express the problem in
one of the forms used in this chapter:

1. As a list of numbered steps describing, in words, exactly what to

- do at each step

2.As a flowchart using the following symbols:

ek T e R ——

for actions

/ N\

4 > for decisions
\ /
START start of program
END end of program

Having done this, the job of writing the program will be made easier,
and the task of making it work reliably will be reduced.

21

LR KRR R EEER R R X RXE L

Chapter 4 - c4 28/7/80

4.0 WRITING A BASIC PROGRAM

Commands and statements typed after BASIC's prompt are executed
immediately, as we have seen in Chapter 2. However if you start the
line with a number, the line is not executed but stored as text in th
computer's memory. '

4.1 RUN

First type 'NEW' to clear the text area. Then try typing in the
following:

L0PRINT "A PROGRAM!™!
20END

When these lines have been typed in you can list the text by typing
LIST. Now type:

RUN

The stored text will be executed, one statement at a time, starting
with the lowest-numbered statement, and the message 'A PROGRAM!' will
be printed out. The text you entered formed a 'program', and the
program was executed, statement by statement, when you typed RUN, The
END statement is used to stop execution of the program; if it is
ommitted an error message will be given.,

4.2 INPUT
Type NEW-again, and then enter the following program:

10 INPUT N
20 N=N+1
30 PRINT N
40 END

This time we have printed the program as it would appear when listed,
so when you type it in, you need not type in the space after the line
number (although it would not matter if you did in this case). The
INPUT statement enables you to supply numbers to a running program.
When it is executed it will print a question mark and wait for a
number to be typed in. The variable specified in the INPUT statement
will then be set to the value typed in. To illustrate, type:

RUN

The program will add 1 to the number you type in; try running it again
and try different numbers.

The INPUT statement may contain more than one variable: a question
mark will be printed for each one, and the values typed in will be
assigned to the variables in turn.

The INPUT statement may also contain strings; these will be
printed out before each question mark. The following program
illustrates this; it converts Fahrenheit to Celsius (Centigrade),

giving the answer to the nearest degree:

10 INPUT “Fahrenheit" F
23

20 PRINT (10*F-315)/18 " Celsius® '
30 END '

The value, in Fahrenheit, is stored in the variable F. The expression
in the PRINT statement converts this to Celsius.
4.3 Comments - REM

The REM statement means ‘remark'; everything on +he line following the
REM "statement will be ignored when the program is being executed, SO
it ‘can be used to insert comments into a program. For example:

5 REM Program for'temperature conversion

4.4 Functions

Functions are operations that return a value. Functions are like
statements in that they have names, consisting of a sequence of
letters,. but unlike statements they return a value and so. can appear
within expressions. - f :

4.4.1 RND

The RND function returns a random number with a value anywhere between

the most negative and most positive numbers that can be represented in
BASIC.. To obtain smaller random numbers the '%' remainder operator can
be used; for example: -

PRINT RND%4

will print a number between -3 and +3.

4.4.2 TOP

TOP returns the address of the first free memory location after the
BASIC program, ;

PRINT &TOP

will print TOP in hexadecimal. This will be #3002 if you have Jjust
entered the interpreter.

PRINT TOP-#3000
is a useful way of finding out how many bytes are used up by &
program.
4.4.3 ABS

The ABS function can be used to give the absolute or positive value o
a number; the number is written in brackets after the function name
For example:

PRINT ABS(-57)

will print 57. One use of ABS is in generating positive rando
numbers. For example:

PRINT ABS(RND)%6
gives a random number between 0 and 5.

4.5 Escape - ESC

Tt is possible to create programs which will never stop; see th
following example in section 4.6. The escape key 'ESC' at the tc¢
left of the keyboard will stop any BASIC program and return control t
the '>' prompt. '

24

R R R R R R R R R R R R R R R E R]

4.6 GOTO

In the above programs the statements were simply executed in ascending
order of their 1line numbers. However it is sometimes necessary to
transfer control forwards or backwards to somewhére other than the
next numbered statement. The GOTO {(go to) statement is used for this
purpose; the GOTO statement specifies the statement to be executed’
next. For example, type:

1 REM Stars
10 PRINT "m*n
20 GOTO 10

A flowchart for this program makes it clear that the program will
never stop printing stars:

START

——— ———— — — s 2irg . e

. . ey e A —— ik, . o

To stop the program you will have to type ESC (escape).

4.6.]1 Labels — a to z

Acorn BASIC offers another option for the GOTO statement. Instead of
giving the number of the statement to be executed next, a statement
can be designated by a 'label', and the GOTO is followed by the
required label. A label can be one of the lower-case letters a to =z.

To illustrate the use of labels, rewrite the 'STARS' program as
follows, using the label 's': '

10 s PRINT "*"
20 GOTO s '

Note that there must be no spaces between the line number 10 and the
label s when you type it in (and therefore only one space when it is
listed). ' :

There are two advantages to using labels, rather than Lline
numbers, in GOTO statements. First, programs are clearer, and do not
depend on how the program lines are numbered. Secondly, the GOTO
statement is faster using a label than using a line number because the
Acorn BASIC interpreter remembers the positions of all 26 1labels,

whereas line numbers are found by searching through the text
sequentially. : : :

4.6.2 Switches

The GOTO statementlmay be followed by any expression which evaluates
to a valid line number; for example:

10 REM Two-Way Switch

20 INPUT "Type 1 or 2" L
30 GOTO (40*L)

40 PRINT "One"

50 END

80 PRINT "Two"

90 END

25

If I is 1 the expression (40*L) will be equal to 40, and the program
will print 'One'. If L is 2 the expression will be equal to 80 and the

. program will print 'Pywo'. The flowchart for this program is as
“follows: ' '
START
|
_ Print
'‘Type 1 or 2'

e —— ———— A —— —

for L
|
/ N\
L=1 / \ L=2
e
N
\/
| Print 'One’ | | Print 'Two'
1 |
END END

4.6.3 Multi-Way Switches

Finally here is an example of a multi-way switch using GOTO. The
program calculates a random number between 0 and 5 and then goes to a
line number between 30 and 35. Each of these lines consists of a PRINT
statement which prints the face of a dice. The single quote 'in the
print statement gives a 'return' to the start of the next line

10 REM Dice Tossing
20 GOTO (30+ABS(RND)%6)
30 PRINT'" *"''. END

31 PRINT" #"''"x"i. END
32 PRINT" #"'"™ xriwxnt. END
33 PRINT"* kNI NR *“_,:' END

34 PRINT"* *nt'n xniuk *"t. END

35 PRINT"* ENIHE HWINE *nu; END

Description of Program:
20 Choose random number between 30 and 35
. 30-35 Print corresponding face of a dice

Sample runs:
~ >RUN

26

o M

- 4% A

JIJ TSIV VST T IV dddddd

* ¥ *V
Ry

4.7 Conditions - IF ... THEN

One of the most useful facilities in BASIC is the ability to execute a
statement only under certain specified conditions. To do this the
IF...THEN statement is used; for example:

IF A=0 THEN PRINT "Zero"

will execute the PRINT statement, and print "Zero", only if the
condition A=0 is true; otherwise everything after THEN will be skipped
and execution will continue with the next line.

4.7.1 Relational Operators

The part of the IF ... THEN statement after the IF is the 'condition'
which can be any two expressions separated by a 'relational operator'

which compares the two expressions. Six different relational operators
can be used: :

= eqgual <> not equal
> . greater than <= 1less than or equal
<- less than >= Jgreater than or equal

where each operator on the left is the opposite of the operator on the
right.

The expressions on each side of the relational operators can be as
complicated as required, and the order is unimportant. There is no
need to put brackets around the expressions. _ ,

For example, the following program prints one of three messages
depending on whether a number typed in is less than 7, equal to 7, or
greater than 7:

10 REM Guess a number

20 INPUT"Guess a number " N

30 IF N<7 THEN PRINT "Tooc small™
40 IF N=7 THEN PRINT "Correct!"”
50 IF N>7 THEN PRINT "Too large™"
60 END

A flowchart for this program is as follows:

27

Print 'Guess

a number'
l
[Input N |
|
/ \
/ Is \ vyes
< N K7 >um—==———— \
\ ? / mmmwemmmmoommsmTTs
\ / Print
no "Poo small"
(mm /
/\
/ Is \ yes
<N = 7 do——mm——==-
\ ? [/ =—m—mm——m—o=mTTs
\ / - Print
no "Correct!"
(e = = /
/ \
/ Is \ vyes
<N > 7 dmmmm=m=—s
\ ? / ——————————— e
\/ , Print
no "Too large"
{mm e /
END

4.7.2 THEN Statement

The statement after THEN can be any statement, even an assignment
statement as in:

'IF A=7 THEN A=6

Note that the meaning of each '=' gign is different. The first ‘'A=7'
is a condition which can be either true or false; the second 'A=6' is
an assignment statement which instructs the computer to set the
variablé A to the value 6. To make this distinction clear the above
statement should be read as: 'If A is equal to 7 then A becomes 6'.
The word THEN can generally be left out, unless the following
statement starts with a T, when THEN must be present to stop the
interpreter objecting to a misspelt THEN.

Conditions can be strung together using the conjunctidns-AND and OR,
so, for example:. : '

4.7.3 Conjunctions — AND and OR -

28

R R R R R R R R R R Y R R R]

10 INPUT A,B
20 IF A=2 AND B=2 THEN PRINT "Both"

30 GOTO 10

will only print "Both" if both A and B are given the value 2.
Alternatively: -

10 INPUT A,B |
20 IF A=2 OR B=2 THEN PRINT "Either"
30 GOTO 10

will only print "Either" if at least one of A and B is equal to 2.

4.8 Logical Variables

An alternative form for the condition in an IF ... THEN statement is
to specify a variable whose value denotes either 'true' or 'false'.
The values 'true' and 'false' are represented by the least significant
byte being non-zero and zero respectively, so:

A=l; B=0

sets A to 'true' and B 'false'. Logical variables can be used in place
of conditions in the IF statement; for example: '

IF A THEN PRINT "True"

will print "True".

4.9 Iteration

One way of printing the powers of 2 would be to write:

10 REM Powers of Two

20 P=1; T=2; @=0

30 PRINT "2 #* , p, " =", T °
40 T=T*2; P=P+1

50 GOTO 30

which will print out:

2 ¥*%] =2
2 *¥* 2 = 4
2 ** 3 =8
2 ** 4 =16
2 %% 5 = 32
2 ** 6 = 64

and so on without stopping. This is a bit inelegant; suppose we wished
to print out just the first 12 powers of 2. It is simply a matter of
detecting when the 12th power has just been printed out, and stopping
then. This can be done with the IF statement as follows:

10 REM First Twelve Powers of Two
20 p=l; T=2; @=0 _

30 PRINT "2 ** » p, " =" o ¢
40 T=T*2; P=P+1

50 IF P<=12 GOTO 30

60 END

The IF statement is followed by a GOTO statement; if P is less than 12
the condition will be true, and the program will go back to line 30.
After the twelth power of 2 has been printed out P will have the value

29

13;'whichuis not less than or équal to 12, and so the program will
stop. _
With the IF statement we have the ability to make the computer do
vast amounts of work as a result of very little effort on our part.
For example we can print 256 exclamation marks simply by running the
follqwing programs:

10 I=0 -
20. PRINT"t"; I=I+l
30 IFI1<256 GOTO 20
40 END

30

TII'JJ'IJ'Il'ﬂl'ﬂ'lFlrHFU'&F&I'WTH'&I‘IFW‘I!‘HITIFHFHFJW

Chapter 5 - ¢5 28/7/80

5.0 LOOPS

The .previous section showed how the IF statement could be used to
cause the same - statements to be executed several times. Recall the
program: '

10 1=0
20 PRINT"1"; I=I+1
30 IF I<256 GOTO 20
40 END

which prints out 256 exclamation marks. This iterative loop is such a
frequently-used operation in BASIC that all BASICs provide a special
pair of statements for this purpose, and Acorn BASIC prov1des a second
type of loop for greater flexibility.

- 5.1 FOR ... NEXT Loops

The FOR statement, together with the NEXT statement, causes a set of
statements to be executed for a range of values of a specified
variable. To illustrate, the above example can be rewritten using a
FOR ... NEXT loop as follows:

10 FOR I=1 TO 256
20 PRINT ™!"

30 NEXT I

40 END

The FOR statement specifies that the statements up to the matching
NEXT statement should be executed for each value of I from 1 to 256
(inclusive). In this example there is one statement between the FOR
and NEXT statements, namely:

PRINT "it™"

This statement has been indented in the program to make the loop
structure clearer; in fact the spaces are ignored by BASIC.

The NEXT statement specifies the variable that was specified in
the corresponding FOR statement. This variable, I in the above
example, is called the 'control variable' of the loop; it can be any
of the variables A to Z. _

The value of the control variable can be used inside the loop, if
required. To illustrate, the following program prints out all
multiples of 12 up to 12%12: '

10" FOR M=1 TO 12
20 PRINT M*12
30 NEXT M

40 END

The range of values specified in the FOR statement can be anything you
wish, even arbitrary expressions. Remember, though, that the loop is
always executed at least once, so the program:

31

10 FOR N=1 TO 0
20 PRINT N

30 NEXT N

40 END

will print 'l' before stopping.

5.1.1 STEP Size.

It is.also possible to specify a STEP size in the FOR statement; the
STEP size will be added to the control variable each time round the
loop, until the control variable exceeds the value specified after TO.
I1f the STEP size is omitted it is assumed to be 1. This provides us
with an alternative way of printing the multiples of 12:

10 FOR M=12 TO 12*12 STEP 12
20 PRINT M

30 NEXT M

40 END

5.2 DO ... UNTIL Loops

Acorn BASIC provides an alternative pair of loop-control statements:
DO and UNTIL. The UNTIL statement is followed by a condition, and
everything between the DO statement and the UNTIL statement 1is
repeatedly executed until the condition becomes true. SO0, to print 256
exclamation marks in yet another way write:

10 I=0

20 DO

30 I=I+1

40 PRINT "1"
50 UNTIL I=256
60 END

Again, the statements inside the DO ... UNTIL loop may be indented to
make the structure clearer. :

The DO ... UNTIL loop is most useful in cases where a program is
to carry on until certain conditions are satisfied before it will
stop. To illustrate, the following program prompts for a series of
numbers, and adds them together. When a 2zero is entered the program
terminates and prints out the sum:

10 s=0
20 DO INPUT J
30 S=5+J

40 UNTIL J=0
50 PRINT "SuM =", S '
60 END

Note that a statement may follow the DO statement, as in this example.

5.2.1 Greatest Common Divisor

The following simple program uses a DO ... UNTIL loop in the
calculation of the greatest common divisor (GCD) of two numbers; i.e.
the largest number that will divide exactly into both of them. For
example, the GCD of 26 and 65 is 13. If the numbers are co-prime the
GCD will be 1:

1 REM Greatest Common Divisor
80 INPUT A,B

32

P N Y Y

R R R R R R R R R R R R R R R R R

90 DO A=A%B
100 IF ABS(B}>ABS(A) THEN T=B; B=A; A=T
120 UNTIL B=0 : : :
130 PRINT "GCD =" A '

140 END
Description of Program:
80 Input two numbers '
90 Set A to remainder when it is divided by B
100 . Make A the larger of the two numbers
120 Stop when B is zero
130 A is the greatest common divisor.

Variables:
A,B - Numbers
T - Temporary variable.

The method is known as EFuclid's algorithm, and to see it working
insert a line:

95 PRINT A,B'

The ABS functions ensure that the program will work for negative as
well as positive numbers,

5.2.2 Successive Approximation

The DO ... UNTIL loop construction is especially useful for problems
involving successive approximation, where the value of a function is
calculated by obtaining better and better approximations until some
criterion of accuracy is met.

The following iterative program calculates the square root of any
number up to about 2,000,000,000. Also shown is the output obtained
when calculating the square root of 200,000,000; '

10 REM Square Root
20 INPUT S
100 QO=8/2
110 DO QO=(Q+S/Q)/2
120 UNTIL (Q-1)*(Q-1)<S AND (Q+1)*({Q+1)>S
130 PRINT Q!

140 END
Description of Program:
20 Input number
100 - Choose starting value
110 Calculate next approximation
120 Carry on until the square lies between the squares of the
numbers either side of the root.
130 Print square root.

Variables:
Q - Square root
S - Number.

Sample run:

>RUN
2200000000
14142

>

33

5.3 Nested Loops

'FOR ... NEXT and DO ... UNTIL loops may be nested; the following
example will print the squares, cubes, and fourth powers of the
numbers 1 to 15 in a neat table:

REM Powers of Numbers
@=8 :

PRINT " X X"2"
-8 PRINT " X"3 X" 4"
10 FOR N=1 TO 15

20 J=N .

30 FOR M=1 TO 4

40 PRINT J; J=J*N

50 NEXT M

55 PRINT'

60 NEXT N

70 END

oUW

The statements numbered 20 to 50 are executed 15 times, for every
value of N from 1 to 15. For each value of N the statements on line 40
are executed four times, for values of M from 1 to 4. Thus 15*4 or 60
numbers are printed out.

5.3.1 Mis—Nested Loops

. Note. that loops must be nested correctly. The following attempt at
printing out 100 pairs of numbers will not work:

10 FOR A=1 TO 10
20 FOR B=1 TO 10
30 PRINT A,B

40 NEXT A

50 NEXT B

The program will, if RUN, give an error (Error 230)., The reason for

the error will become clear if you try to indent the statements within
each loop, as in the previous example.

34

L e e e e oA AD

JYSTTVTESVV TSIV TSIy

Chapter 6 - c6 28/7/80

6.0 SUBROUTINES

As soon as a program becomes longer than a few lines it is probably
more convenient to think of it as a sequence of steps, each step being
written as a separate 'routine', an independent piece of program which
can be tested in isolation, and which can be incorporated into other
programs when the same function is needed.

6.1 GOSUB

Sections of program can be isolated from the rest of the program using
a BASIC construction called the 'subroutine'. In the main program a
statement such as:

GOSUB 1000

causes control to be transferred to the statement at line 1000. The
statements from line 1000 comprise the subroutine. The subroutine is
terminated by a statement:

RETURN

which causes a jump back to the main 'calling' program to the
statement immediately following the GOSUB 1000. It is just as if the
statements from 1000 up to the RETURN statement had simply been
inserted in place of the GOSUB 1000 statement in the main program.,

As an example, consider the following program:

10 A=10
20 GOSUB 100
30 A=20
40 GOSUB 100
50 END

100 PRINT A '
110 RETURN

Lines 100 and 110 form a subroutine, separate from the rest of the
program, and they are terminated by RETURN. The subroutine is called
twice from the main program, in lines 20 and 40. The program, when
RUN, will print:

10

20
>

6.1.1 Chequebook-Balancing Program

As a more serious example, consider a program for balancing a
chequebook. The program will have three distinct stages; reading in
the credits, reading in the debits, and printing the final amount. We
can immediately write the main program as:

10 REM Chequebbok—Bélancing Program
20 PRINT "Enter Credits"'
30 GOSUB 1000 '

35

40 PRINT "Enter debits"!'
50 GoOsSuB 2000

60 PRINT "Total is "

70 GOSUB 3000

80 END

Now all we have to do is write the subroutines at lines 1000, 2000,
and 30001 '
The subroutines might be written as follows:

1000 REM Sum Credits in C
1010 REM Changes C,J

1020 C=0

1030 DO INPUT J; C=C+J
1040 UNTIL J=0

1050 RETURN

2000 REM Sum Debits in D
2010 REM Changes D,J
2020 D=0

2030 ‘DO INPUT J; D=D+J
2040 UNTIL J=0

2050 RETURN -

3000 REM Print Total in T

3010 REM Changes T; Uses C,D

3020 T=C-D; @=5

3030 PRINT T/100," Pounds",T%100," Pence"
3040 RETURN

values are entered in pence, and entering zero will terminate the list
of credits or debits. - ' _

The two subroutines at 1000 and 2000 are strikingly similar, and
this suggests that it might be possible to dispense with one of them.
Indeed, the main part of the chequebook~balancing program can be
written as follows, eliminating subroutine 1000: .

10 REM Chequebook-Balancing Program
20 PRINT "Enter Credits"

30 GOSUB 2000 -

40 C=D ‘

50 PRINT "Enter debits"

60 GOSUB 2000

70 PRINT "Total is "

80 GOSUB 3000

90 END

'In conclusion, subroutines have two important uses:

1. To divide programs into modules that can be written and tested
separately, thereby making it eéasier to understand the operation of
the program

2. To make it possible to use the same piece of progfam for a number
of similar, related, functions. '

As a rough guide, if a program is too long to fit onto the screen of
the VDU it should be broken down into subroutines. Each subroutine
should state clearly, in REM statements at the start of the
subroutine, the purpose of the subroutine, which variables are used by
the subroutine, and which variables are altered by the subroutine. A
few moments spent documenting the operation of the subroutine in this

36

JEJVTTTSTETT TV VTSV TSI d iy

way will save hours spent at a later date trying to debug a program
which uses the subroutine.

6.2 GOSUB Label

The GOSUB statement is just like the GOTO statement that has already
been described, in that it can be followed by a line number, an
expEssion evaluating to a line number, or a label. Labels are of the
form a to z, and the first line of the subroutine should contain the
label immediately following the line number.

6.2.1 Linear Interpolation

The following program uses linear interpolation to find the roots of
an equation using only integer arithmetic, although the program could
be modified to use floating-point statements.

The equation is specified in a subroutine, vy, giving Y in terms of
X; the program finds solutions for Y=0.

As given, the program finds the root of the equation:

x2- X - 1= 0

The larger root of this equation is phi, the golden ratio. A scaling
factor of 5=1000 is included in the equation so that calculations can
be performed to three decimal places.

The program prompts for two values of X which lie either side of
the root reguired

1 REM Linear Interpolation
5 8=1000; @=0; I=1

10 INPUT "X1",A,"X2",B

20 A=A*S; B=B*S

30 X=A; GOSUB y; C=Y

40 X=B; GOSUB y; D=Y

50 IF C*D<0 GOTO 80

60 PRINT "Root not bracketed"”

70 END

80 DO I=I+1

90 X=B~(B-A)*D/(D-C); GOSUB y
100 IF C*Y<0 THEN A=X; C=Y; GOTO 120
110 B=X; D=Y
120 UNTIL ABS(A-B)<2 OR ABS(Y)<2
130 PRINT"Root is X= "
140 IF X<0 PRINT "-"
145 PRINT ABS(X)/s,"."
150 DO X=ABS(X)%S; S=S/10
155 PRINT X/S; UNTIL S=1 -
160 PRINT'"Needed ",I," iterations."!
170 END o .
200 y¥=X*X/S-X-1*g
210 RETURN

Description of Program: o
5-70 Check that starting values bracket a root
80-120 = Find root by successive approximation
130-145 Print integer part of root '

150-155 Print decimal places

160 Print number of iterations needed :

200~210 y: Subroutine giving Y in terms of X, with appropriate

scaling.
Variables:

37

A - Lower starting value of X
" B - Upper starting value of X
C - Value of Y for X=A
D - Value of Y for X=B
I - Iteration number
S - Scaling factor; all numbers are multiplied by S -and held as
' integers _ '
X - Root being approximated
Y - Value of equation for given X.

' Sample run:

>RUN

X171

X223

Root is X= 1.618
Needed 7 iterations.

6.3 Subroutines Calling Subroutines

Cften the task carried out by a subroutine may itself usefully be
broken down into a number of smaller steps, and so it might be
convenient to include calls to subroutines within other subroutines.
This is perfectly legal, and subroutines may be nested up to a maximum
depth of 15 calls. o '

6.4 Recursive Subroutine Calls

Sometimes a problem can be more simply expressed if it is allowed to
include a reference to itself. When a subroutine includes a call to
itself in this way it is known as a 'recursive' subroutine call, and
it is possible to use recursive calls in Acorn BASIC provided that the
depth of recursion is limited to 15 calls. The following half~hearted

program uses a recursive call to print out ten .stars without using a

‘loop:

10 REM Recursive Stars
20 p=10; GOSUB p
30 END

100 pREM Print P stars
‘110 IF P=0 RETURN

120 p=P-1
~130 GOSUB p; REM Print P-1 stars
14

0 PRINT "*"
150 RETURN

This program could, of course, be written more effectively ﬁsing a
simple FOR ... NEXT loop. The following programs, however, use

recursion to great benefit to solve mathematical problems that would

be much harder to solve using iteration alone.

6.3.1 Tower of Hanoi Problem

In the Tower of Hanoi problem three pegs are fastened to a stand, and
there are a number of wooden disks each with a hole at its centre. The
- disks are all of different diameters, and they all start on one peg,

- arranged in order of size with the largest disk at_the bottom of the:

pile_ . _ _ : _ :

The problem is to shift the pile to &another peg by transferring
one disk at a time, with the restriction that no disk may ke placed on
top of a smaller disk. The number of moves required rises rapidly with
the number of disks used; the problem was classically described with

38

Fe 3%

JIJVIBIISEY VI IIIIdIIdIdddvidvgd

64 disks, and moving one disk per second the solution of this problem
would take more than 500,000 million years!
A recursive solution to the problem, stated in words, is:

To move F disks from peg A to peg B:

1. Move F-1 disks from peg A to peg C
2. Move bottom disk from peg A to peg B
3. Move F-1 disks from peg C to peg B.

Also, when F is zero there is no need to do anything. Steps 1 and 3 of
the procedure contain a reference to the whole procedure, so the
solution is recursive. .

The following program will solve the problem for up to 11 disks,
and displays the piles of disks at every stage in the solution, with
coloured disks on the teletext screen:

1 REM Tower of Hanoi
10 PRINTS12
20 A=TOP;:D=A+4
30 T=#400+40*21;REM somewhere on teletext screen
40 V==3;W=-1;L=40;N=14
60 I!D=#1020300;!A=0;S=#20202020;M=¢7F
70 INPUT"Number of disks "F;R=T-L*F-1
80 A?1=F;?D=F;C=1;FORZ=L TO F*L STEP L
85 C=C+1;IFC>7 C=1
87 R?(Z+1)=C+1l6
90 FORQ=R+2TOR+Z% /L+1; Z20Q0=M;N.
100 NEXT : '
110 GOSUBh:END
1000 hIF?D=0 RETURN
1010 D!4=!D-1;D?6=D?1;D?5=D?2;D=D+4;GOSUBhA
1020 X=T-D?W?A*L+D?W*N+26
1030 ¥Y=T-D?V?2A*L+D?V*N-N
1040 FORQ=0TOD?—4STEP4;Y!Q=X!Q;X!Q=S;N.
1050 A?(D?W)=A?(D?W)+W;A?{D?V)=A2(D?V)-W
1060 D?3=D?-2;D?2=D?W;D?1=D?V;GOSUBhI
1070 D=D-4;RETURN

Description of Program£ (for ! and ? see chapter 7)

100 Draw starting pile of disks

110 : Subroutine h is called recursively to move the number of
disks specified in ?D

1000 h: Subroutine to move ?D disks

1010 Recursive call to move ?D-1 disks

1020 Calculate position of disk to be moved

1030 Calculate positon to where disk will be moved

1040 Move disk

1050 Set up array A

1060 Recursive call to put back ?D-1 disks.

Variables:

A?N - Number of disks on pile N
D - Btack pointer

?D -~ How many disks to transfer
D?1 - Destination Pile

D?2 - Intermediate pile

D?3 - Source pile

Total number of disks
Length of screen line

Mark character

One third of screen width
Four space characters

hz =0
|

39

V - Constant
W - Constant.

6.3.2 Eight Queens Problem

A classical mathematical problem consists of placing eight queens on a
chessboard so that no gqueen attacks any other. The following program
find all possible solutions to the problem, and prints out the total
number of solutions:

1-

30

60
100
110
120
130
140
150

le0.

REM Eight Queens

C=0; D=TOP; E=D+3; A=D+27; !D=0
@=0;G0S.t;P."There are "C" solutions™';END
tIF?D=#FF C=C+1;RETURN

?A=(?D|D?1|D?2): #FF

1I1F?Aa=0R.

A21=7?A&-7?A
?E=?D|A?1;E?1=(D?1|A?1)*2;E?2=(D?2|A?1)/2
D=D+3;E=E+3;A=A+2;G05.t;D=D-3; E=E-3;A=A~2
?A=?A&(A?l:#FF);GOTOl

Description of Program:

30 Initialise array space. D is vector of attaéks, ?D is row
attacks, D?1 1s left dlagonal attacks, D?2 is rlght diagonal
attacks _

60 Call recursive analyser and print answer _

100 t: Recursive analyser- if all rows attacked have found a
solution

110 Calculate p0351ble places to put new queen

120 If no possible place, end this recursive attempt

130 Find least significant bit in p0551ble places to use as new
gueen position

140 Calculate new attacked values

150 Recursive call of analyser

160 Remove this position from 90531ble positions and see if done.

Variables:

?A - Possible positions; wvalue of A changes
C - Solutions counter

?D - Row attacks; value of D changes

E - Holds D+3 to make program shorter.

40

JISTITETISSV TSIV aiddaviddd

Chapter 7 - c¢7 28/7/80

7.0 VECTORS

So far we have met just 26 variables, called A to Z. Suppose you
wanted to plot a graph showing the mean temperature for every month of
the year. You could, at a pinch, use the twelve letters A to I to

represent the mean temperatures, and read in the temperatures by
saying:

INPUT A,B,C,D,E,F,G,H,I,J,K,L

However there is a much better way. A mathematician might call the
list of temperatures by the names:

tl' tz, t3' 2 e aase tlzl

where the 'subscript', the number written below the line, is the
number of the month in the year. This representation of the twelve
temperatures is much more meaningful than using twelve different
letters to stand for them, and there is no doubt about which symbol
represents the temperature of, for example, the third month.

A similar series of variables can be created in Acorn BASIC; these
are called 'vectors'. Each vector consists of a vector 'identifier’,
or name, corresponding to the name 't' in the above example, and a
'subscript'. On most computers there is no facility for writing
subscripts, so some other representation is used. Each member of the
vector can act as a completely independent variable, capable of
holding a value just like the variables A to %Z. The members of a
vector are called the vector 'elements', The total number of possible
elements depends on how the vector was set up; in the above example
there were twelve elements, with subscripts from 1 to 12.

Acorn BASIC provides two types of vectors, called 'byte vectors'
and 'word vectors'. Byte vectors are useful when only a small range of
numbers are needed, and they use less storage space than word vectors.
Word vectors use enough store to hold any numerical value.

7.1 Word Vectors

The word vector in Acorn BASIC uses an ordinary variable to hold the
start address or base of the vector and the '!' (called 'pling') to
represent -a subscript; for example E!4. Each element in this type of

-vector can contain numbers as large as the simple variables A to Z,

namely, between about -2000 million and 2000 million.

Before a vector can be used space must be reserved for it by
utilising the value of TOP, the function which returns the first free
byte after the end of the program. For example, to set up space for
two vectors using A and B as bases with A having five elements and B
having an unknown amount, the statement would be:

A=TOP; B=A+5%*4

To leave space for N elements in B when allocating C, you should use
C=B+N*4. Since the elements of a word vector require 4 bytes each the
useful values for subscripts are all multiples of 4, and the
allocation of space (done in bytes) must be done by multiplying by 4.
We have now set things up so that A's first element, A!0 (which can be

41

written !A) would be at TOP, above the program text:

AlD Al4 Al8 All2 Allé

Note that the elements in a word vector are of the form Al (N*4). The
gquestion marks represent unspecified values, depending on what the
memory contained when it was assigned. Space for the vector B is
reserved immediately following on from A. Thus. the fifth element of
vector A is also the first element of vector B (Al120=!B). :

Vector elements can appear in expressions, and be assigned to,
just like the simple variables A to Z. For example, to make the value
of All2 become 776 we would execute: -

A112=776
Then we could execute:
 Al4=A112%2
!AéA!lZ‘G
and so on. The resulting vector would now be:

ALD A4 A8 A112 All6

There are two places in BASIC programs where vector elements may
not be used; these are:

1. As the control variable in a FOR ... NEXT loop
2. In an INPUT statement. '
In these two cases the simple variables, A to Z, must be used.

7.1.1 Prime Numbers

The following program finds all the prime numbers up to 99999. It uses
a word vector to store primes already found, and tests new candidates
for divisibility by these numbers only. The amount of space given to
the word vector is not determined in the program, but the program is
only actively using the numbers in the vector up to the square root of
the current candidate, the rest of the numbers do not need to be
actually present: '

1 REM Prime Numbers
10 @=8;8=4; Z=0;J=TOP;G=J; 1G=3;P=G+S
20 FORT=3T09999%99STEP2
30 cIFT%!1G=Z G=J;N.
" 40 IFT>1G*1G G=G+S;G.c
50 P.T;!P=T;G=J;P=P+5;N.
60 END

Description of Program:

10 Set up vector

20 Test all odd numbers

30 If divisible, try another

42

P T . Y. Y. .Y

JIJUVIVIIITYT VUG IIUTddaddyidddd

40 Have we tried encugh divisors?
50 Must be prime - print it.

Variables:

!G - Divisor being tested
J - Egual to TOP

IP - Vector of divisors

S - Bytes per word '
T - Candidate for prime

Z - Constant zero.

7.1.2 Sorting Program

The following program illustrates the use of vectors to sort a series
of numbers into ascending order. It uses a fairly efficient sorting
procedure known as the 'Shell' sort. The program, as written, reads in .

20 numbers, calls a subroutine to sort the numbers into order, and
prints the sorted numbers out:

1 REM Sorting
5 A=TOP
10 FOR N=4 TO 20*4 STEP 4; INPUT J
- 20 AIN=J; NEXT N
30 GOSURB s
40 FOR N=4 TO 20*4 STEP 4; PRINT A!IN'
50 NEXT N-
%0 END
100 sQ=N/4
110 DO Q=(Q+2)/3;M=0%4
120 FOR I=M+4 TO N STEP 4

130 FOR J=I TO M+4 STEP -M

140 IF A1J>=A!(J-M) GOTO b

150 T=AlJ; A!J=A!(J-M)}; A!(J-M)=T
160 NEXT J

170 b NEXT I
180 UNTIL M=4; RETURN

Description of Program:

5-20 Read in vector of numbers
30 Call Shell sort
4050 Print out sorted vector

100-180 s: Shell sort subroutine
140-150 Swap elements which are out of order.

Variables:

Al(4 .. 80) - Vector to hold numbers
I,J - Loop counters

N - Elements in vector A

M - Subset step size

T - Temporary variable.

7.1.3 Subscript Checking

In Acorn BASIC it is left to the programmer to ensure that vector
subscripts do not go out of range. Assigning to a vector whose
subscript is out of range will change the values of other vectors, or
strings, dimensioned after that vector.

If required, the programmer can easily add vector subscript

checking; for example, if a vector A with 11 elements were assigned
to: .

43

R!A=35
the statement:
IF A>40 OR A<0 THEN ERROR

could be added before the assignment to cause an error if the vector
subscript, A, went out of range.

7.2 Byte Vectors

The byte vector in Acorn BASIC again uses an ordinary variable to hold

the start address of the vector and the '?' query to represent a-
subscript; for example E?3. Each element in this type of vector can

contain numbers between 0 and 255, i.e. one byte long. Space is
allocated by allowing oneé byte per element; for example, to allocate
space for a byte vector A with six elements, execite:

A=TOP; B=A+6
The elements of this byte vector would then be:
A?0, A?1, A?2, A?3, A?4, A?5.

For many jobs, e.g. arrays of small numbers, or arrays of logical
values, byte vectors are ideal since they are easier to use, and use
less space than word vectors. The byte vector is also used for string
manipulation, see section 8.4.1.

7.2.1 Arbitrary-Precision Arithmetic

The following program allows powers of two to be calculated to any
precision, given enough memory. As it stands the program will

calculate all the powers of 2 having less than 32 digits. The digits

are stored in a vector A, one digit per vector element. Every power of
2 is obtained from the previous one by multiplying every element in

the vector by 2, and propagating a carry when any element becomes more
than one digit: :

5 REM Powers of Two
10 A=TOP
20 @=1; P=0
30 A?0=1
40 FOR J=1 TO 31
50 A?2T=0
60 NEXT J
70 DO J=31
80 DO J=J-1; UNTIL A?J<>0
85 PRINT'"2"" p "="
90 FOR K=J TO 0 STEP -1

94 PRINT A?K
96 NEXT K
110 Cc=0
120 FOR J=0 TCO 31
130 B=A2J*2+C
140 C=A/10
150 A?J=B%10
160 NEXT J
170 P=P+1
180 UNTIL A?31<>0
190 END

Description of Program:

44

&
=
s
.
B
:
e
<
c
.
.
>
g

Y b (T e Tl T T T

5

dEd VA IER VIV UIIIIVV VISV YT TS

40-60 Zero vector of digits

80 Ignore leading zeros

85-96 Print power

110-160 Multiply current number by 2
180 Stop when vector overflows.
Variables:

A - Vector of digits; one digit per element
Decimal carry from one digit to next

~ Digit counter

Digit counter

Power being evaluated.

§ i

RGO

7.3 Multiple Dimensions

The standard types of vector in Acorn BASIC are one~dimensional. In
other words, they have just one subscript, and so can be visualised as
lying in a straight line; hence the name 'vector'.

Sometimes it is convenient to make each element of a vector
represent a cell in a square 'matrix'; each element would then have
two subscripts corresponding to the column and row of that sguare.
Such two-dimensional objects are called 'matrices'. Consider the
following representation of a 3 by 6 matrix:

012345
0 I O A O O
TN
2l 1)1 Ixt]
The whole matrix has 3 x 6 = 18 elements, and the element shown with

an X would have the subscripts (2,4).

Acorn BASIC does not have a direct representation for
two-dimensional (or higher dimension) matrices, but they are easily
represented using vectors as described in the following sections.

7.3.1 calculation of Subscripts
To represent a two-dimensional matrix using a one-dimensional array

imagine the matrix divided into rows as shown:

012345 012345 012345

D e L ———— —— ———— . e . ———— ——— ——— oy p

D e L —— ——————— e e e e — — ———— ———— " —t,

The first element of row 1, with subscripts {1,0), follows immediately
after the last element of row 0, with coordinates (0,5). Consider the
general case where the matrix has M rows numbered 0 to M-1, and N
columns numbered 0 to N-1. The amount of space that the matrix
requires (for a word vector) is: -

(M*N-1)%*4
Any matrix element, with subscripts A and B, can be referenced as:
X! ((A*N+B) *4)

In the earlier example the matrix had dimensions 3 x 6 and so would
require:

»

45

(3%6-1)*%4=17%*4=68
The array element with subscripts (2,4) would be given by:
.3}64

Needlesé;to say, you can actually write X! ((A*N+B)*4) instead of
working out the answer!

7.3.2 Solving Simultaneous Equations

The following program will solve a number of linear simultaneous
equations, using a matrix to hold the coefficients of the equations,
and a matrix inversion technique to- find the solution. The program
prints the solutions as integers, where possible, or as exact
fractions.

- This method has ‘the advantage over the standard pivotal
condensation technique that for integer coefficients the answers are
exact integers or fractions.

The example run shown solves the pair of equations:

a+ 2b + 1 0
4a + 5b + 2 0

10 REM Simultaneous Equations
50 INPUT"Number of equations "N
60 I=N*N;J=N*(N+1) -
65 A=TOP;C=A+4*I+4;I=C+J*4+4;REM-I has N*4 bytes
70 @=0;FOR J=1TON;FOR K=1TO N+1 :
80 PRINT"C("J","K")=";INPUT B
90 C!(((J—l)*(N+l)+K)*4)=B;NEXT;NEXT
100 L=N*4+4:GOSUB c;E=D;M=1-2*(N%2)
_llﬂ.PRINT'"Solution:“'
112 IF E<0 E=-E;M=-M
115 IF E=0;PRINT"Degenerate!”';END
. 120 FOR L=4TON*4STEP4;GOSUB cC
125 PRINT"X("L/4")= "
130 Z=M*D;B=E;DO Z=2%B _
140 IF ABS(B)>ABS(Z) THEN T=B;B=Z; Z=T
150 UNTIL B=0;Z=ABS(Z)
151 P.M*D/Z;IF E/Z<>1 PRINT"/"E/Z
155 M=-M;PRINT';NEXT L; END
160 cFOR J=4TON*4STEP4;FOR K=4TON* 4STEP4; Q=J*N-N*4+K
170 IF K<L A1Q=C! (Q+J—4) o
180 IF K>=L A!1Q=C!(Q+J)
190 NEXT;NEXT
200 dp=0;F=1;5=1
210 FOR J=1TON;I£(J*4)=J;F=F*J;NEXT J
215 GOSUB £ '
220 FOR H=2TOF¥;GOSUB e:;NEXT H;RETURN
230 eJ=N*4-4;K=N*4 -
240 gIF I1J>=I!(J+4) J=J-4;GOTO g
. 250 hIF I!'J>=I!K K=K-4;GOTO h
260 GOSUB i:J=J+4;K=N*4;IF,J=K GOTO £
270 DO GOSUB i;J=J+4;K=K-4;UNTIL J>=K
280 £P=1;FOR Y=4TON*4STEP4;P=A!(N*Y+(I!Y—N)*4)*P_
290 NEXT Y;D=D+S*P;RETURN
300 iY=I!J;ItJ=I!K;I1!K=Y
310 .S=-8;RETURN

" Description of Program:
50-60 Allocate space for matrix

46

P Y. O . Y

JEJVIYIEIR VI EIIT IV ISV Iddd

70-90 Read in matrix of coefficients

120-155 Print solutions 3

130-150 Find GCD of solution, so it is printed in lowest terms

160-190 c: Permute terms to obtain next addition to determinant; i.e.
for 5 equations, starting with (1,2,3,4,5) run through all
permutations to (5,4,3,2,1)

280-290 f: Add in next product to determinant

300-310 i: Swap terms in permutation.

Variaples:

A(l ... N*N) - Matrix

C(l ... N*N+N) - Matrix of coefficients
S - Signature of permutation.

Sample run:

>RUN

Number of equations 22
C(1,1)=21

C(1,2)=22

C(er):?l .

C{2,1)=24

C(212)=?5

C(2r3)=?2

Solution:
X(1l)= 1/3
X(2)= =-2/3

7.4 Call by Reference

A major advantage of vectors over the arrays found in more normal
BASIC interpreters is that their base addresses are available as
values, and so can be passed to subroutines. As an example, consider
this program:

10 A=TOP; B=A+40

»

90 P=A; GOSUB p
94 P=B; GOSUB p
98 END

REM Output A
REM Output B

-

-

100 pREM Print 10 Elements of array P
105 @=8; PRINT '

110 FOR J=0 TO 39 STEP 4

120 PRINT P!J

130 NEXT J

140 PRINT '

150 RETURN

In this example subroutine p can be used to print any vector by
passing its base address over in the variable P; this is known as a
'call by reference' because the subrcutine is given a reference to the
vector, rather than the actual values in the vector.

7.4.1 Arbitrary Precision Powers-

The following program illustrates the use of word vectors to calculate
the value of any number raised to any other number exactly, limited
only by the amount of memory available. The program stores four
decimal digits per word, so that the product of two words will not

cause overflow, and the result is calculated as a word vector:

47

1 REM Arbitrary Precision Powers
5 T=TOP;DOT=T+1;?T=#55:UNTIL?T<>#55
10 H=(T-TOP-3)/3;P=TOP;S=P+H;D=P+H

15 H=10000
20 @=0;PRINT'" " Power Program" -
30 PRINT'" Computes Y X, Where X>0 and Y>0"

40 INPUT'" Value of Y"Y," Value of X"X
50 IFX<1ORY<IPRINT" Value out of range";GOTO040

60 M=Y;

N=X;GOSUBD

70 PRINT Y" " "X"="P!!P;IF1P<8 GOTO1l0
90 FORL=!P-4TO4STEP-4

95 IFL!

- 100 IFL!
110 IFL!
120 P.L!

P<1000P.0
P<100P.0
P<10P.0
P;N.;GOTOL0

200 pJ=M;IFN$2=0J=1

210 R=P;
250 B=S;

GOS.e; J=M;R=5;G0S.e; IFN=1R.
DOA=B;G0S.m; B=E

255 N=N/2;A=P;IFN%2G0S.m; P=E
260 U.N<2;R.

300 m!D=!A+!B+4;F.J=4T0!{D+458.4
310 D!J=0;N.;W=D-4

320 F.J=4T0!B S5.4;C=0;G=B1J
325 V=W+J;F.L=4TO!A S.4

330 Q=A!

L*G+C+VIL; VIL=0Q%H

340 C=Q/H;N.;VIL=C;N. '

370 DOID=!D-4;U.D!!D<>0;E=D;D=A;R.
400 e!R=0;DOd=!R+4;R!!R=J%H

410 J=J/H;U.J<1;R.

Description of Program:

5

10
20-40
50

60

70

90

140
200-260

300-370

400-410

Variables:
DI ... -
“H' - Radix
Ptl ... -

Set T to top of available memory; if you know the address,
replace by e.g. T=#4000 .

Divide available memory between P, S, and D

Read in values of Y and X

Disallow negative values

Calculate power

Print result if it fits in one word

Print rest of result, filling in leading zeros

Blank line to make listing clearer _

p: Calculates power. Looks at binary representation of X and
for each bit sguares B, and if bit is a 1 multiplies P by
current B

m: Multiply together the vectors pointed to by A and B and
put the result into the vector pointed to by D. Pointers to
vectors get changed; E points to result .

e: Unpack J into vector pointed to by R; store number of
words in IR. -

Workspace vector
for arithmetic
Vector for unpacked result

1P — Number of elements used in P

S10 ... -

Workspace vector

T - Top of available memory.

Sample run:

- >RUN

48

JESTIVETEETT VTSV

Power Program
Computes Y"X, Where X>0 and Y>0
Value of.-¥?16
Value of X764
16"64=1157920892373161954235709850086879078532699846656405640394575
84007913129639936

7.5 Vectors of Vectors

A second way of representing two-dimensional arrays is possible using
word vectors; this avoids the need for a multiplication to calculate
the subscript, but does require slightly more storage. The idea is to
think of a two-dimensional matrix as a vector of vectors; first a
vector is created containing the addresses of the rows of the matrix.
For example, for a byte matrix called X with columns 0 to M, and rows
0 to N, the following statements will set up the vector of row
addresses:

X=TOP; T=X+2*N
FOR - J=0 TO N*2 STEP 2; X!J=T;T=T+M; NEXT J

A word array is used to hold the base addresses. T is used to allocate
the space for each vector. Now that the vector of row base addresses
has been set up, the element with subscripts A,B is:

X1(A*2)?B

49

'ﬂ'ﬂ"ﬂﬂrﬂ'ﬂ'ﬁ'lf'ﬂl'ﬂ'lf'Hﬂl'ﬂ'ﬂ'Hl'ﬂ'ﬂ'lf'lf'ﬂ'lrﬂ'b"ﬂ'U'ﬂ'ﬂ'F

Chapter 8 - c8 28/7/80

8.0 STRINGS

A 'strlng is a sequence of characters; the characters can be anything
- letters, digits, or punctuation marks. They can even be control
characters.

8.1 Quoted Strings

Strings are represented in a program by enclosing the characters
between quotation marks; quoted strings have already been: introduced
in the context of the PRINT and INPUT statements. For example:

"This is a string"

To represent a quotation mark in a quoted string the guotation mark is
typed twice. Valid strlngs always contain an even hnumber of quotation
marks. For example: . :

PRINT"He said: ""This is a valid string"""
will print; '

He said: "This is a valid string"

8.2 String Variables

The variables A to Z have already been met, where they are used to
represent numbers. These variables can also be used to represent
strings, and. strings can be manipulated, input with the INPUT
statement, printed with the PRINT statement, and there are several
functions for manipulating strings.

8.2.1 Allocating Space for Strings

BASIC allows strings of any size up to 255 characters. To use string
variables space for the strings should first be allocated as if you
were about to use a byte vector, with an additional byte for the
string terminator. For example, for a string of up to 10 characters
using the variable A the statement would be:

A=TOP;B=A+11;REM B is next free byte

8.2.2 String Operator '$'

Having allocated space for the string it can then be assigned a value.
For example:

$A="A STRING"

The '$' is the string-address operator. It specifies that the value
following it is the address of the first character of a string.

The effect of the statement A=TOP is to set A to the address of
free memory above the text of the BASIC program. In other words, A is
a pointer to that area of memory. After the above assignment the
contents of those locations are as follows:

51

Az

The question-marks indicate that the last two locations could contain
anything. The character '~' represents 'return' which is automatically
stored in memory to indicate the end of the string. This is why you
need to allocate one extra location to hold this terminator character,
although you will not normally be aware of its presence when actually
using the strings. o

Note that it would be dangerous to allocate a string of more than

10 characters to A since it would exceed the space allocated to A.

8.2.3 Printing Strings
A string variable can be printed by writing:

PRINT $A
This would print:
A STRING>

and no extra spaces are inserted before or after the string.

8.2.4 String Assignment
Suppose that two strings are allocated as follows:
A=TOP ; B=A+256

The allocation allows for all eventualities, since the string A cannot
exceed 255 (+1)} characters. The string $A can be assigned to $§B by the
statement:

$B=§A

which should be read as 'string B becomes string A'. The result of
this assignment in memory is as follows:

8.2.5 String Equality
It is possible to test whether two strings are equal with the IF
statement. Example: '

SA="CAT"; $B="CAT"
IF $A=$B PRINT "SAME"

would print SAME.

8.2.6 String Input

The INPUT statement may specify a string variable, in which case the
string typed after the '?' prompt, and up to the 'return', will be
assigned to the string variable. The maximum length of line that can
be typed in to an INPUT statement is 64 characters so, for safety, the

. string ‘variable in the INPUT statement should be allocated with a

length of 64.

52

JIJTIGTESSVVT TSI yyyyydy

8.3 String Functions

Several functions are provided to help with the manipulation of
strings.

8.3.1 Length of a String - LEN

The LEN functiOn will return the number of characters in the string
specified by its argument. For example:

$A="A STRING"
"PRINT LEN(A)

will print the value 8. Note that:

$B=" nonmw
PRINT LEN(B)

'will print 1 since the string B contains only a single quote

character.

8.3.2 CH

The CH function will return the ASCIT value of the first character in

‘the string specified by its argument. Thus:

CH IIAII

will be equal to 65, the ASCII code for A. The string terminating
character 'return' has a value of 13, so:

CH mn

‘will be equal to 13.

8.4 String Manipulations

The following sections show how the characters within strings can be
manipulated, and how strings can be concatenated into longer strings
or broken down into substrings.

8.4.]1 Character Extraction - '?°

Individual characters in a string can be accessed with the
question-mark '?' operator. Consider again the representation of the
string A. Number the characters, starting with zero:

0123456789 10

A

The value of the Nth character in the string is then simply A?N. For
example, A?7 is "G", etc. In general A?B is the value of the character
stored in the location whose address is A+B;. therefore A?B is
identical to B?A. In other words, a string is being thought of as a
byte vector whose elements contain characters; see section 7.2.

The following program illustrates the use of the '?°' operator to
convert the case of all the characters in a string which is typed in:

1 REM Convert String
5 O=TOP
10 INPUT $Q
20 FOR N=(0 TO LEN(Q}-1
30 Q?N=Q7?N : #20

53

40 NEXT N
50 PRINT $Q
60 RUN

8.4.2 Encoding/Decoding Program

As a slightly more advanced example of string operations using the '?’
operator, the following program will produce a very secure encoding of
a message. The program is given a number, which is used to 'seed'
BASIC's random number generator. To decode the text the negative of
the same seed must be entered:

1 REM Encoder/Decoder
10 S=TOP; ?12=0
20 INPUT'"Code number "T

30 t8=ABS(T) s 7
40 INPUT'SS -~ -~ ~~ NIRRT
50 FOR P=S TO S+LEN(S)
60 IF 2P<#41 GOTO 100
70 R=ABS(RND) %26
80 IF T<0 THEN R=26-R
90 ?P=(?P-#414R)%26+#41
100 NEXT P
110 PRINT $S
120 GOTO 40

Description of Program:

20 Input code number .

30 Use code number to seed random number generator

40 Read in line of text _

50-100 For each character, if it is a letter add the next random
_ number to it, modulo 26

110 . Print out encoded string.

Variables: ‘

P -~ Address of character in string
R - Next random number

S - Address of string; set to TOP
T - Code number.

Sample'run:

>RUN

Code number 7?7123

?MEETING IN LONDON ON THURSDAY
BGYKPYI CM NHSHVO VU RGFGDHJI

P> :
>RUN

Code number ?-123

?BGYKPYI CM NHSHVO VU RGFGDHJI
MEETING IN LONDON ON THURSDAY

To illustrate how secure this encoding algorithm is, try decoding the
following quotation:

YUVHW 'ZY WKQN IAVUAG QM SHXTSDK
GSY IEJB RZTINOL UFQ FTONB JB BY
CXRK QCJF UN TJRB.

54

JEJVT STV Vi ddssdidaviddyiddd

SWB FJA IYT WCC LQFWHA YHW OHRMNI OUJ

HTJ I TYCU GQYFT FT SGGHH HJ FRP ELPHQMD,-
RW LN QOHD OQXSER CUAB.

DXKLCLDBCV.

8.4.3 Concatenation

Concatenation is the operation of joining two strings together to make
one string. To concatenate string B to the end of string A execute:

- SA+LEN(A)=$B
For example:
10 A=TOP;B=A+20
. 20 S$A="Acorn "
30 $B="BaSIC"
40 SA+LEN(A)=$B
5¢ PRINT SA'
60 END
will print:
Acorn BASIC>

8.4.4 Right-String Extraction

The right-hand part of a string A, starting at character N, is simply:

SA+N

For example, executing:

10 A=TOP;:B=A+20

20 SA="Acorn BASIC"
30 $B=SA+6

40 END

" will give string B the value "BASIC".

8.4.5 Left-String Extractioh
A string A can be shortened to the first N characters by executing:

$A+N= nn
Since the 'return' character has the value 13, this is equivalent to:
A?N=13

8.4.6 Mid-String Extraction

The middle section of a string can be extracted by combining the
techniques of the previous two sections. For example, the string
consisting of characters M to N of string A is obtained by:

$A+N=""; S$A=$A+M N
For example, if the following is executed:
10 A=TQOP B ‘ .
20 $A="Acorn BASIC" : :

30 $A+5=""; S$A=$A+1
40 END '

then string A will have the value "corn".

55

8.5 Vectors of Fixed-Length Strings

The word vectors may be used as string variables, thus providing the
ability to have vectors of strings. To allocate space for a vector of
strings the allocation statement can be incorporated into a FOR ...
NEXT loop. For example, the following program allocates space for 21
strings, A10 to A!80, each capable of holding 10 characters:

25 A=TOP:T=A+84
35 FOR N=0 PO 80 STEP 4

40 AIN=T
50 T=T+11
60 NEXT N

Note the use of variable T to allocate the space for each string.
Individual elements of the string array can then be assigned to as
follows:

$A10="ZERO"
$A14="ONE"
$A140="TEN"

and so on.

8.5.1 Day of Week

The following program calculates the day of the week for any date in
the 20th. century. It stores the names of the days of the week in a
string vector. Note that this program uses a calculation to select
each particular string: '

1 REM Day of Week
10 A=TOP .
20 $A="Sunday";$A+10="Monday"
30 $A+20="Tuesday";$A+30="Wednesday" .
40 SA+40="Thursday"; $A+50="Friday"
50 $A+60="Saturday" i
70 INPUT"Day of week"''"Year "Y,"Month "M, "Date in month "D
80 ¥=Y-1900 ' -
90 IF Y<0 OR Y>99 PRINT"ONLY 20TH CENTURY !"';GOTO 70
‘100 IF M>2 THEN M=M-2; GOTO 120 .
110 y=Yy-1; M=M+10
120 E=(26*M-2)/10+D+Y+Y/4+19/4-2*19
130 PRINT"It is " S$A+ABS(E%7)*10 '

140 END
Description of Program:
10 Allocate space for string vector
20-50 Set vector elements
70 ' Input date
80-120 Calculate day
130 Print day of week.

Variables:
$A - String vector to hold names of days
‘D - Date in month

FE - Expression which, module 7, gives day of week
M - Month

N - Counter -

Y

- Year in 20th century.

56

JESVITETS ISV STV dydddyidddd

8.6 Arrays of Variable-Length Strings

The most economical way to use the memory available is to allocate
only as much space as is needed for each string. For example the
following program reads in 10 strings and saves them in strings called
V!0 to V136: :

10 V=TOP;T=V+40 oo
20 FOR N=0 TO 36 STEP 4

30 INPUT $T l .

40" VIN=T - !

50 T=T+LEN(T)+1

60 NEXT N

70 INPUT "STRING NUMBER",N

80 PRINT S$VIN'

90 GOTO 70

T is set to the address of the first free memory location. T is then
incremented past each string to the next free memory location as each
string is read in. Finally, when 10 strings have been read in the
program prompts for a string number and types out the string of that
number .

For example, if the first three strings entered were: “ONE",
"TWO", and "THREE", the contents of memory would be:

8.7 Reading Text

Some BASICs have statements READ and DATA whereby strlngs listed in
the DATA statements can be read into a string variable using the READ
statement.

Although Acorn BASIC does not provide these actual statements,
reading strings specified as text is a falrly simple matter. The
following program reads the strings "ONE", "TWO" ... etc. into a
string variable, $A, and prints them out. The strings for the numbers
are specified as text after the program. They are identified by a
label 't', and a call to subroutine 'f£' sets Q to the address of the
first string. Subroutine 'r' will then read the next string from the
list:

10 REM Read Text
20 A=TQP; L=CH"t"
25 GOSUB f
30 FOR J=1 TO 20; GOSUB r
40 PRINT $A '
50 NEXT J
60 END .
500 fREM point Q to text
510 Q=?18%*25¢6
520 DO Q=Q+1
- 530 UNTIL ?Q=#D AND Q?3=L
540 Q0=0Q+4; RETURN
550 *
600 rREM read next entry into A
605 REM. changes: A,Q,R
610 R=-1

57

620 DO R=R+1; AZR=Q?R

630 UNTIL A?R=CH"," OR A?R=#D
640 IF A?R=#D Q=Q+3

650 0=0Q+R+1; A?R=#D; RETURN
660 *

800 tONE,TWO, THREE,FOUR.FIVE
810 SIX,SEVEN,EIGHT,N1NE,TEN
820 ELEVEN,TWELVE, THIRTEEN
830 FOURTEEN,FIFTEEN,SIXTEEN
840 ~ SEVENTEEN,EIGHTEEN,NINETEEN
850 TWENTY

Description of Program:

25 Find the text
30 Read in the next string
40 Print it out

500-550 f: Search for label t and point Q to first string
600-660 r: Read up to comma or return and put string into $A
800-850 t: List of 20 strings, note the space after the line number.

Variables:

$A - String

J - Counter

L - Label for text

Q - Pointer to strings
R - Temporary pointer.

The program can be modified to read from several different blocks of
text with different labels by changing the value of L. Also note that
the character delimiting the strings may be any character, specified
in the CH function in line 630.

8.7.1 Reading Numeric PData

Numeric data can be specified as strings of characters as in in the
Read Text program of the previous section, and converted to numbers
using the VAL command in the extension ROM. For example, modify the
Read Text program by changing line 40 to:

40 FPRINT VAL A
and provide numeric data at the label 't', for example as follows:

800 t1,2,3,4,1E30,27,66
810 91,1.2,1.3,1.4,1.5
820 13,14,15,16,17

830 18,19,20

8.8 Printing Single Characters - '$°'

A special use of the '$' operator in the PRINT statement is to print
characters that can not conveniently be specified as a string in the
program, such as control characters and graphics symbols. Normally 'S’
is followed by a variable used as the base address of the string. If,
however, the value following the dollar is less than 255, the
character corresponding to that code will be printed instead.

The most useful control codes are specified in the following
sections; for a full list of control codes see section 10.1.

8.8.1 Cursor Movement

The cursor can be moved in any of the four directions on the screen
using the following codes:

58

JIJIJES SISV EIIIITIIYIdIIIddddddd

Hex Decimal Cursor Movement
#08 8 Left

. #09 9 Right

#0A 10 Down

#0B S11 Up

The screen is scrolled when the cursor is moved off the bottom line of
the screen; the cursor cannot be moved off the top of the screen.

8.8.2 Screen Control
The following control codes are useful for controlling the VDU screen:

Hex Decimal Control Character
$0C 12. ‘Clear screen and home cursor
#1E 30 Home cursor to top left of screen

8.8.3 Random Walk

The following program prints characters on the screen following a
random walk. One of the cursor control codes, chosen at random, is
printed to move the cursor; a character, chosen at random, is then
printed followed by a backspace to move the cursor back to the
character position: :

1 REM Random Walk

10 DO ,

20 PRINT S$ABS(RND)%4+8, $(#20+ABSRND%96), $8
30 UNTIL 0

59

i R R R R R KRR KR

Chapter 9 - c9 28/7/80

9.0 READING AND WRITING DATA

The reader should now be familiar with the three types of data that
can be manipulated using Acorn BASIC, namely: '

l. Words i.e. numbers between -2000 million and 2000 million
(approximately). ' '
Storage required: 4 bytes
e.g. variables A to Z°
word vectors Al4 ... etc,
indirection A ... etc.

2. Bytes i.e. numbers between 0 and 255, or single characters, or
logical values. '

Storage required: 1 byte
e.g. byte vectors A?l ... etc.
indirection ?a ... etc.

3. Strings i.e. sequences of between 0 and 255 characters, followed by
a 'return'. .

-Storage required: Length+l bytes

e.g9. gquoted string "A STRING"
string variable $A ... etc.

All these types of data can be written to files and read from files,

‘making it very simple to make files of data generated by programs.

BASIC's functions and statements for file input and output are
designed to be used with the disk operating system, but a restricted
set of them can be used with the cassette operating system. When the
disk operating system is used, several files can be used by one
program, and the individual files are identified by a 'file handle', a
number specifying which file is being referred to. Although this
facility is not available when working with a cassette operating
system, the file handle is still required for compatability.

9.1 Find Input and Find Output

The functions FIN (find input) and FOUT (find output) MUST be called
before inputting from, or outputting to, files when used with the disk
operating system; if used with the cassette operating system they will
cause an error. The functions are called with a string as the argument
which represents the name of the required file, and they return a
value in the range 0 to 255, which will identify this file when it is
used. This value is the 'file handle”’. '
The FOUT function is called as follows:

A=FOUT"EXAMPLE"

and it will open the file EXAMPLE on the current drive in the current
qualifier for output. That is, if EXAMPLE exists its current size is
used, but none of the data may be accessed, if it does not exist then-
a new file with the disk operating system's default file size will be

created. Refer to your disk operating system manual for further
details. . : S

The FIN function is called as follows:
A=FIN"E.G.IN"

61

and it will open the file E.G.IN on the current drive in the current
qualifier for input and updating. The file must exist, otherwise the
value returned will be zero. Refer to your disk operating system
manual for further details.

9.2 Output
To output a word to file the PUT statement is used. Its form is:
PUT A,W

where A and W are the file handle and word for output respectively.
To output a byte to file the BPUT statement is used; the form is:

BPUT A,B

where A is the file handle, and B is the byte for output.
To output a string the SPUT statement is used. The form is:

SPUT A,S

where A is the file handle, and S is the base address of the string.

9.3 Input
To read a word from file the GET function is used. Its form is:
GET A

where A is the file handle., The function returns the value of the
word.

To read a byte the BGET function is used. Its form is:
BGET A

where A is the file handle. The BGET function returns the value of the
byte, and can therefore be used in expressions; for example:

PRINT BGET A + BGET A

will read two bytes from files and print their sum.
To read strings the SGET statement is used. The form is:

SGET A,S

where A is the file handle, and S is the base address where the string
will be stored. The string S should be large enough to accomodate the
string being read.

Note the difference between SGET, which is a statement, and the
functions BGET and GET; SGET cannot be used in expressions.

9.4 Data Control

With the disk operating system, BASIC can discover the length of
files, and can control the position of the next byte to be read or
written. The statements that control this will cause errors with the
cassette operating system.

Once a file has been opened with FIN or FOUT, its extent (current
length) may be read with the EXT function:

A=FIN"FRED"; PRINT"FRED is "EXT A" bytes long"'

When a file has been opened, it can be considered as a group of
bytes numbered 0,1,... . The number of the next byte to be transferred
{either read or written) is available as the value of the function
PTR. The PTR of a file may also be updated:

A=FIN"FRED"
PRINT"Initial value "PTRA'; REM will be zero
PTRA=PTRA+20;REM skip first 20 bytes '

62

VOJ VSTV TSIy idddiydd

{

Both input and output file pointers may be manipulated. After a
byte is transferred a file's pointer is automatically incremented.
Refer to your disk operating system manual for further details.

9.5 Data with Cassette

With the current cassette operating system a byte can be read from the
moving tape, and bytes can be written to tape. However, when writing
to tape an I/0 port must first be initialised, the simplest way to do
this is to use a single BPUT statement before asking for the drive to
be started. -

9.5.1 Data to Cassette

The following program prompts for a series of values, terminated by -a
zero, and saves them on a cassette tape. The first word saved on the
tape is the number of words of data following:

1 REM Data to Cassette
10 V=TOP;BPUTA,-1;REM dummy bput to initialise
20 N=0 - :
30 DO INPUT J
40 VIN=J; N=N+4
50 UNTIL J=0 '
60 PRINT"Start tape recording"';LINK#FFE3;FORZ=0TOL1000;N.
70 PUT A, (N-4)
80 FOR M=0 TO N-4 STEP 4
90 PUT A,VIM

100 NEXT M
110 END
Description of Program: :
30=50 Input numbers _ - :
60 Warn user to start tape; use #FFE3 to wait for a key
70 Output number of bytes '
80-100 Save values on files.
Variables:

A - Pummy file handle

J - Temporary variable for values input
M - Counter

N - Counter for number of values

Vi{0 ... 80) - Vector of numbers.

The next program reads the values back in and prints them out,
together with thé maximum and minimum values:

1 REM Read from Cassette
10 V=TOP .
20 PRINT"Play tape"';LINK#FFE3;N=GET A
30 FOR M=0 TO N STEP 4
40 VIM= GET A
50 NEXT M
60 REM X=Maximum, Y=Minimum
70 X=1V; ¥Y=X;PRINT"Data "X
80 FOR M=4 TO N STEP 4
50 PRINTVIM :
100 IF X<VIM THEN X=VIM
110 I¥ ¥>VIM THEN Y=VIM
120 NEXT M
130 PRINT'"Maximum "X'"Minimum "Y'’
140 END ' :

63

Description of Program:
20-50 Read values into array
70-130 Find maximum and minimum values in vector and print them

Variables:
A - Dummy file handle
M - Counter
N - Number of values in array
v(0 ... } - Vector of values
X - Maximum value

Y - Minimum value

9.5.2 Reading and Writing Speed

When writing data to the files it is important to remember that the
program reading the data back will not be able to control the
cassette; it will have to read the data before it has passed under the
tape head. If the program to read the data will spend a substantial
time between reading, it may miss bytes passing under the tape head
unless a delay is inserted between bytes when writing to tape.

As a general guide, the program to read the data should take no
longer to read each byte than the program to write the data takes to
write it.

9.5.3 Animal Learning Program

The following program illustrates how a computer can be 'taught’
information, so that a 'database' of replies to questions can be built
up. The computer plays a game called 'Animal’; the human player thinks
of an animal and the computer tries to guess it by asking questions to
which the answer is either 'yes' or 'no‘. Initially the computer only
knows about a dog and a crow, but as the game is played the computer
is taught about all the animals that it fails to guess.

. The program uses the files input/output statements to locad the
database, or tree, from files at the start of the game, and to save
the enlarged database at the end of the game.

First create a database by typing:

GOSUB 9000;

and record the database on a files. Then RUN the program and load the
database you have just recorded. When the reply 'NO' is given to the
question 'Are you thinking of an animal' the program will save the
new, enlarged, database on files. Also given is a sample run which was
obtained after several new animals had been introduced to the
computer: :

1 REM Animals

10 REM Load Tree

20 PRINT"Play tape"';LINK#FFE3
25 FOR T=TOP TO TOP+GET F

30 ?T=BGET F; NEXT T

35 DO X=TOP '

40 PRINT'"Are you thinking of an animal”
45 GOSUB g

48 IF Q=0 THEN GOSUB z; END

50 DO PRINT $X+1

60 GOSUB gq

65 P=X+LENX+1+Q; X=1P+TOP

70 UNTIL ?2X<>CH"*®

75 PRINT"IS IT " $X

80 GOSUB ¢

64

aa M A& D

- e W A M A O

ﬂl‘«ﬂl‘«ﬂﬂﬂ'ﬂl‘!ﬂﬂﬂEr'ﬂﬂﬂll'il'&l'ﬂ'ﬂ'&l'ﬂ!'&ﬂﬂrﬂl'ﬂﬂﬂf

¢

85 1IF Q=4 PRINT "HO-HO";UNTIL O
88 DO
90 INPUT"What were you thlnklng of "$T
95 UNTIL LEN T>2
98 L=T; GOSUB s
lOO'PRINT“ Tell me a question "
110 PRINT"that will"'"distinguish "
120 PRINT "between " S$L" and " $X '
130° $T="*": R=T+1 '
140 INPUT $R; !P=T-TOP; GOSUB 5
145 K=T7: T—T+8 GOSUB j
150 GOSUB q
160 K1Q=X-TQP; K'(4—Q)—L—TOP
170 UNTIL 0
1000 gINPUT ST _
- 1010 IF 7T—CH"Y"OR7T=CH“y“THEN Q“4 RETURN
1020 IF ?T=CH"Q"THEN ‘END
1030 Q=0; RETURN
2000 j$T—$R ‘ '
2010 FOR A=2 TO LEN T-5
2020 V=T?2(A+4); S$T+A+4=""
2030 IF $T+A=" IT " GOTO l
. 2035 T?(A+4)=V
2040 NEXT A _
2100 PRINT"What would the answer be"®
2110 PRINT"For " $X :
2120 RETURN _
2150172 (A+4)=V; S$T+A+1=""
2160 PRINT $T, $X, $T+A+3
2170 RETURN
3000sT=T+LEN T+1; RETURN
9000 REM Set-Up File
9010 T=TOP; $T="*DOES IT HAVE FOUR LEGS"
9015 GOSUB s; P=T; T=T+8; P=T-TOP
9020 $T="A CROW"; GOSUB 8; P14=T-T0OP
9025 $T="A DOG"; GOSUB s : '
9100zREM Save Tree
9110 BPUTF,F; PRINT"Record tape“'-LINK#FFEO
9115 PUT F (T—TOP)
© 9120 FOR N=TOP TO T
-9130 BPUT F, 2N
9140 NEXT N
%150 RETURN

Description of Program:

20-30 Load previous tree

35 Reset X to top of tree

50 Print next question

70 Carry on until not a question
75 Guess animal

90-95 Wait for a sensible reply

98 Find end of reply

1000-1030 g: Look for Y, N, or Q; set Q accordingly
2000~-2120 j: Look for " IT ™ in question and print question with " T "
replaced by name of animal. :

3000 s: Move T to end of string ST
9000 Set up tree file
9100 -zt Save tree file.

Variables: _ _
F - Dummy file handle

65

— Pointer to addresses of next two branches of tree
— Pointer to animal typed in

- Pointer to address of next question or animal
Value of reply to question; no=0, yes=4

~ Pointer to question typed in

- Pointer to next free location

- Pointer to current position on tree.

XRATOWE R
|

Sample run:

>RUN

Are you thinking of an animal?Y

DOES IT HAVE FOUR LEGS?Y

CAN YOQU RIDE IT?N

DOES IT HAVE STRIPES’N

IS IT A DOG?N

What were you thinking of A MOUSE
Tell me a gquestion that will

distinguish between A MOUSE and A DOG

?DOES IT SQUEAK

DOES A DOG SQUEAK ?NO

Are you thinking of an animal?Y
DOES IT HAVE FOUR LEGS?Y

CAN YOU RIDE IT?N

DOES IT HAVE STRIPES?N

DOES IT SQUEAK?Y

IS IT A MOUSE?Y

HG~HO

Are you thinking of an animal?N
Record tape

>

9.6 Data with Disk

All the programs in section 9.5 can be run with the disk by inserting
appropriate FIN and FOUT statements, but the programs in this section
cannot be run with the cassette operating system. With the disk, the
invalid file handle of zero has the special function of reading (if
GET) from the keyboard or writing (if PUT) to the output channel. Up
to five files may be opened simultaneously.

9.6.1 Going Backwards

The following program illustrates random access to a disk file u31ng
PTR. It prompts for the name of a file and then prints the contents in
reverse order, as hexadecimal numbers:

10 INPUT"Name of file "$TOP

20 A=FINSTOP;IFA=0 GOTOn

30 IFEXTA=0 PRINT"Nothing"';END

40 @=4;FORZ=EXTA TO 0 STEFP-1

50 PTRA=Z;PRINT&BGETA;NEXT

60 PRINT';END .
100 nPRINT"File not on disk™'"Here is catalogue"''
110 *CAT
120 RUN

9.6.2 File Editor

The following program allows you to create, edit and merge files, with
a view to creating an EXEC file.

66

JIJIIT VSIS NI NI IJISdIIITEdduidgd

Up to three source files may be opened by typing their names in
response to- the "SOURCE" prompt. Typing return to this prompt at any
stage ends the allocation of inputs. The program then prompts for an
input string; the string input at this stage is normally allocated as
the keyboard source; source 0. o

‘Special strings input at this stage act as commands to the file
editor: '

n Space n return = will take the next string off source n and
o7 -~ . transfer it to the output -
" Sn "S" n return will step to the next string in source n without
' affecting the output =~ :
Rn "R" n return will rewind source n without affecting the
: AR output _
An "A" n return will transfer all of the remaining strings in
_ source n to the output file : _
$DEL "SDEL" will delete the last string that was transferred
_ E from the output file :
$END "SEND" will terminate the creation of the output file.

After typing "%END" in response to the "INPUT STRING"” prompt the
program will prompt for the name of the destination file. The file
that has been created will be saved with the name typed in at this
point. If no destination file is required then an input of "%NONE"
will create no output file.

If ‘any errors occur or the escape key is pressed while the program
is running the catalogue must be tidied up by typing:

SHUTO
*DELETE XXXX

The prbgram may then be executéd again with safety. Here is the
program:

10 P.$12
20 P."SOURCE DESTINATION"
"30 A=TOP;B=A+4;C=B+40;D=C+80 '
40 E=D+§8:T=E+20)
50 P=0
60 $E= "6"7- ’] I 5\
70 !D=#100B0600;D!4=0
100 GOSUBa;REM allocate source get strings

110 REM Create destination . £

120 *save x ‘W 4g00" |kt Save LSTI

130 I=FIN"XXXX" -4 ¥

140 DO X=22;Y=4;GOSUBCc

150 P."Input string";GOSUBg

160 INPUTST :

170 IFT?1>#2F AND T?1<($30+Z) AND T?2=13;GOSUBvV;UNTILO
180 IF$T="$DEL"; P=P-1;GOSUBL;U.0

190 IF?T<>CH"$";GOSUBh;U.0

200 UNTILS$T="$END"

210 tS=PTRI;SHUTO

220 I=FIN"XXXX"

230 INPUT"Destination file name "S$T

240 IFST="$NONE";GOTO280

250 K=FIN$T; IFK=0;K=FOUT$T;GOTOi _

260 SHUTK;$#100="DELETE "; $#108=35T; LINK4#FFF7; K=FOUTS$T
270 iDO;SGETI,T;SPUTK, $T;U.PTRI=S

280 SHUTO o

290 *DELETE"XXXX"

67

300
310
320
340
360
370
380
390
400

410
420 -

430
440
450
460
470
490
510
520
530
540
550
560
. 570
580
590
600
610
620
630
640

650

660
670
690
710
730
750
760
770
780
790
800
810
830
850
860
870
880
900
820

*CAT

END

jDO; $T=$(C+J*20) ;GOSUBA;GOSUBe; U.$T="End of file";R.

REM Allocate sources

az=1l

zd=Z-1 _
X=D?2J;Y=D?(J+4):GOSUBC
@=2;P."Source "Z

GOSUBg

INPUT" "ST
IF§T="";P.$11;G08SUBg;GOTOx
G=FINST; IFG=0;GOT0O380
A?J=G; S(B+J*10)=8T '
Z=Z+1;IF2<4;G0TOzZ

.XIFZ=1;RETURN

FORJ=0TOZ-2;GOSUBe;N.;R.
REM New string to output f11e
dSPUTI, ST
P=P+1
1 PTRI=0;Q=P
IF P>15 DO;SGETI, T ;1 0=0-1;UNTILQ<K16
X=17-Q;¥=20
FOR R=1 TO Q;GOSUB c;GOSUB g
SGETI,T;PRINT ST
X=X+1;NEXT
RETURN-
vI=T?21-#30
IF?T=CH"S"ANDJ<>0;J=J-1;GOSUBe;R.
IF?T=CH"R"ANDJ<>0;J=J~1;PTR(A?J)=0;GOSUBe;R.
IF?T=CH"A"ANDJ<>O;J=J-l;GOSUBj;R.
IF?2T<>32;GOSUBL;R.
IFJ=0; $T=$E;GOSUBA;R.
J=J-1
$T=$(C+J*20) ;GOSUBJd ;GOSUBe;R.
REM Move cursor to X,Y
cP.$30; FORO=0TOX;P.$10;N. ; FORO=0TOY;P.$9;N.;R.
REM New string off input
e
IFPTR(A?J)>=EXT(A?J); $T="End of file";GOTOy
SGET(A?J),T
IF LENT>19 $T="No string"
yS$(C+I*20)= $T
X=D2J+1;¥=D?(J+4) ; GOSUBC; GOSUBg P.ST
RETURN
REM Update keyboard channel
hX=18;Y=1;GOSUBc;P."SOURCE 0",$13,$10," KEYBOARD = "
GOSUBg;P.S$T

SE=$T
RETURN _
REM Clear 20 spaces on screen

gp." ":FORO=0T018;P.3$8;N.;R.

Description of program

10-20
30-70

Clear screen print titles
Initialise variables and pointers

100-130 Create inputs and outputs

140-200 = Input string and check for commands

210-220 Shut all files and open "XXXX" again

230-240 Input destination name and check for "$NONE"
250-270 Transfer created file to destination

68

280-310
320

340-470
490-590
530-590
600-650
660-670
690=710
730-810
830-880
900-920

Shut all files and tldy up
j:Transfer all of source to destlnatlon
a:Allocate source files (up to three)
d:Put. string $T onto destinaing $T onto destination
1:Print out contents of destination file
v:Iinterpret input command

Transfer one string from source to destlnatlon
c:Move cursor to X,Y
e:Get next string off source into ST
h:Put new string to keyboard source
g: Clear half a line on the screen.

Variables:

A -

Pointer

Pointer

Pointer
Pointer
Pointer

to
to
to
to
to

source handles

file names

current top strings off files
vector of heading p051t10ns
keyboard string

NMKXHNIOMOLUMOBD O
i

UL R R IR 0 R R VR U R UV U VU R VR R R L |

Temporary store of file handle

~ Destination file handle

— Number of current source file

~ Counter various uses

Number of strings on destination file
~ Number of output strings to. print
— Number of string printed

- Destination file length

- Pointer to string transfer buffer
- X coordinate for cursor move

-~ y coordinate for. cursor move

~ Number of source files.

69

10.2 Changing Text Spaces

The 'text space' is the region of memory used by the BASIC interpreter
for storing the text of programs. On first entering the interpreter at
4Cc2B2, the text space is initialised to be from #3000 upwards.
However, it is possible to change the value of the text-space pointer
so that text can be entered and stored in different areas of memory.
It is even possible to have several different programs resident
concurrently in memory, in different text spaces.

The memory location 18 (decimal) contains a pointer to the first
page of the BASIC text. This value is refered to by the system in the
following cases:

1. During line editing in direct mode
2. During a SAVE statement; the save parameters are ?18*256 and TOP
3. During a LOAD command; a new program is loaded to ?18%*256

4. During the execution of a GOTO or GOSUB statement or a RUN
statement, labels with known values being the exception.

Changing 218 in programs permits a BASIC program in one text area
to call subroutines in a BASIC program in another text area. The value
of TOP will not change with this kind of use, so its use as a memory
space allocator and pointer to the end of text in the line editor must
be watched carefully.

10.2.1 Calling Subroutines in Different Text Spaces

The following example shows the entering of a subprogram and main
program in different text spaces. First enter a subroutine in the
first text space:

?18=4#32

NEW
10 PRINT"TEXT AREA ONE"'
20 RETURN '

Now change the value of the text-space pointer and enter a program to
call this subroutine into the second text space:

218=#33
NEW
10 REM CALIL SUBROUTINE IN #32
20 ?18=#32
.30 GOSUB 10
40 REM PROVE YOU'RE BACK
50 PRINT"TEXT AREA TWO"'
.60 GOSUB 10 :
70 ?18=#33;REM BACK FOREVER -
80 END

Now run the program:

RUN
TEXT AREA ONE
TEXT AREA TWO
TEXT AREA ONE

Note that switching back to the first text space by typing:
?18=#32
will not change the value of TOP. To reset TOP, type:

END

72

P W

&

R R R R R R R R R R AR

10.3 Renumbering Programs

The following routine can be used to renumber the line-numbers of a
program or piece of text. The program and renumber routine must both
be in memory at the same time, in different text spaces. Note that the
renumber program only renumbers the line numbers; it does not renumber
numbers in GOTO or GOSUB statements.

10.3.1 Renumbering

You must first enter the program to be renumbered into memory, e.q.
load” it from file. Then choose an area of memory for the renumber
program {e.g. the next page after TOP), and set the text pointer
there. Then load in the renumber program:

1 REM Renumber
10 INPUT"TEXT SPACE TO RENUMBER" %
15 Z=Z*25¢%
20 INPUT“START AT"A, "STEP"B
30 ?18=%2/256
40 IFZ?1=255 END
50 DOZ?1=A/256;Z722=A;A=A+B
55 Z=Z+3+LEN(32Z+3)
60 UNTILZ?1=255;END

. Then RUN the program, and reply to the prompts as follows:

' TEXT SPACE TO RENUMBER ?#30
START AT?10
STEP?10

The program will switch back to the usual text space, and the
renumbered program can be listed.

" 10.4 Appending Files

By using the operating systems load relocate, a BASIC program may be
added to the end of a BASIC program. The procedure is :

LOAD"FRED"
PRINT&TOP'

3284
>*LOAD"FRED+" 3282
>END
>

That is, load the new file to TOP-2.

10.5 Trapping Errors

The memory locations 16 and 17 contain a pointer, low byte in 16, high
byte in 17, to the start of a BASIC program which is entered whenever
an error occurs. In direct mode they are set to point at a program in
the interpreter which reads:

@=5;P.'"Error"?0;IF! 1&#FFFF<>0P." at line "11&#FFFF
0 P.'":E.

Location 0 contains the error number and locations 1 and 2 contain the
line number where the interpreter thinks it occurred. Programs
intended to handle errors should store the value of 11 since it is
changed whenever a return is executed. The first character in a text
space that can be pointed to by 2?16 and ?17 is at the start of the
text space plus three, and this is the first character of the listed
program. All interpreter stacks are cleared after an error but the

73

values of labels are not forgotten.

10.5.1 On Error GOTO

To provide a GOTO on an error it is necessary to provide a string
containing the GOTO statement, and write the address of this string in
jocations 16 and 17. For example, to provide a jump to line 170 on an
error:

10 A=TOP
20 $A="GOTO 170"
30 ?16=A; ?17=A/256

10.5.2 Calculator Program

The following program. simulates a desk-top calculator; it will
evaluate any expression which is typed in, and any error will cause
the message "BAD SYNTAX" to be printed out:

10 E=TOP; SE="P,""BAD SYNTAX""';G.30“
20 ?16=E; 217=E/256
30 @=0; DO IN.A; P.5$320"="a; U.O

10.6 Program Chaining

Using programs in seperate text spaces, chaining of programs can be
accomplished:

10 REM chain in TOTAL

20 *LOAD TOTAL 3200

30 *DIR

40 REM the DIR waits until DOS completion
50 ?18=#32

60 RUN

However, this does not have the entire effect, since the END of the
program loaded has not affected TOP. With the DOS, chaining can easily
be accomplished using an EXEC file:

10 REM chain in user file

20 INPUT"File name "S$TOP

30 A=FINSTOP;IFA=0 PRINT"NO such file"';RUN
40 SHUTA;A=FOUT"XXXXXXX" '

50 SPUTA,“LOAD$TOP“

60 SPUTA, "RUN"

70 SHUTA

80 *EXEC XXXXXXX

90 END

74

Tﬂ'&ﬂﬂl"ﬂl’«ﬂ"ﬂ'«r&F&F&F&F&F&F&F&F&ﬂﬂ'ﬂ'«lf&ﬂﬂ'&rﬂ'&r&r&rﬂ'&ﬂlrﬂ'iﬂf

Chapter 11 - c¢l1 28/7/80

11.0 THE MACHINE

The Acorn BASIC will allow machine code subroutines to be executed

during a program and has many abilities for actually manipulating the
real computer. Thus the critical sections of programs, where speed is
important, can be written in assembler, with the control and
'intelligence' written in BASIC.

When programming in BASIC it is not usually necessary to
understand how the parts of the computer are working together, or
where anything in particular lives in the computer. However in this
chapter on the machine itself some understandlng of these parts is
needed.

11.1 Memory

The computer's memory can be thought of as a number of ‘locations',
each capable of holding a value. An Acorn computer capable of running
the BASIC interpreter has at least 1024 locations used to hold the
values necessary for the interpreter and operating system to function.

Somehow it must be possible to distinguish between one location
and another. Houses in a town are distinguished by each having a
unique address; even when the occupants of a house change, the address
of the house remains the same. Similarly, each location in a computer
has a unique ‘'address', consisting of a number. Thus the first few
locations in memory have the addresses 0, 1, 2, 3 ... etc. Thus we can
speak of the 'contents' of location 100 as the number stored in the
location of that address. :

11.2 Hexadecimal Notation

Having been brought up to count in tens it, seems natural for us to
use a base of ten for our numbers, and any other system seems clumsy.
We have just ten symbols, 0, 1, 2, ... 8, 2, and we can use these
symbols to represent numbers as large as we please by making the value
of the digit depend on its position in the number. Thus, in the number
171 the first 'l' means 100, and the second 'l' means 1. Moving a
digit one place to the left increases its value by 10; this is why our
system is called ‘'base ten' or 'decimal'.

It happens that base 10 is singularly unsuitable for working with
computers; we choose instead base 16, or ‘'hexadecimal', and it will
pay to spend a little time becoming familiar with this number system.

First of all, in base 16 we need 16 different symbols to represent
the 16 different digits. For convenience we retain 0 to 9, and use the
letters A to F to represent values of ten to fifteen:

Hexadecimal digit: 0 1 2 3 4 5 6 7 8 9 A B C D E F
Decimal value: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The second difference between base 16 and base 10 is the value
accorded to the digit by virtue of its position. In base 16 moving a
digit one place to the left multiplies its value by 16 (not 10).

Because it is not always clear whether a number is hexadecimal or
decimal, hexadecimal numbers will be prefixed with a hash '#' symbol.
Now look at the following examples of hexadecimal numbers:

75

#B1

The 'B' has the value 11*16 because it is one position to the left of
the units column, and there is 1 unit; the number therefore has the
decimal value 176+1 or 177.

#123

The 'l' is two places to the left, so it has value 16*16*1. The '2°
has the value 16*2. The '3' has the value 3. Adding these together we
obtain: 256+32+3 = 291,

There is really no need to learn how to convert between
hexadecimal and decimal because the BASIC interpreter can do it for
you.

11.2.1 Converting Hexadecimal to Decimal

To print out the decimal value of a hexadecimal number, such as #123,
type:
PRINT #123

The answer, 291, is printed out.

11.2.2 Converting Decimal to Hexadecimal
To print in hexadecimal the value of a decimal number, type:
PRINT &123

The answer, #7B, is printed out. The '&' symbol meahs 'print in -
hexadecimal'. Thus writing: :

PRINT {
will print 123.

11.3 Binary Notation

The computer memory consists of electronic circuits that can be put
into one of two different states. Such circuits are called bistables
because they have two stable states, or flip/flops, for similar
reasons. The two states are.- normally represented as 0 and 1, but they
are often referred to by different terms as listed below:

State

0 1
Zero one
low high
clear set
off on

When the digits 0 and 1 are used to refer to the states of a bistable
they are referred to as 'binary digits', or 'bits' for brevity.

With two bits you can represent four different states which can be
listed as follows, if the bits are called A and B:

HHROO
—Ho~olm

With four bits you can represent one of 16 different values, since
2x2x2x2=16, and so each hexadecimal digit can be represented by a
four-bit binary number. The hexadecimal digits and their binary

76

Jdd o s s s SIS IVIsddivdddaddd

equivalents are shown in the following table: .

Decimal Hexadecimal Binary

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 c 1100
13 D 1101
14 E 1110
15 F 1111

Any decimal number can be converted into its binary representation by
the simple procedure of converting each hexadecimal digit into the
corresponding four bits. For example: ' :

Decimal: 25
Hexadecimal: 19
' / N\

: -/ \
Binary: 0001 1001

Thus the binary equivalent of #19 is 00011001 (or, leaving out the
leading zeros, 11001).

11.4 Bytes

The size of each memory location is called a ‘byte'. A byte can
represent any one of 256 different values. A byte can hold a number
between 0 and 255 in decimal, or from #00 to $FF in hexadecimal. Note
that exactly two digits of a hex number can be held in one byte.
Alternatively a byte can be interpreted as one of 256 different
characters. Yet another option is for the byte to be interpreted as
one of 256 different instructions for the processor to execute. We

- have already seen that we need exactly two hexadecimal digits to

represent all the different possible values in a byte of information.
It should now be clear that a byte corresponds to eight bits of
information, since each hex digit requires four bits to specify it.
The bits in a byte are usually numbered, for convenience, as follows:

76543210
00011001

Bit 0 is often referred to as the tlow-order bit' or
'least-significant bit', and bit 7 as the 'high-order bit' or
'most-significant bit'. Note that bit 0 corresponds to the units
column, and moving a bit one place to the left in a number multiplies
its value by 2.

11.4.1 Examining Memory Locations - '2°'

We can now look at the contents of some memory locations in the
Acorn's memory. To do this we use the '?' gquery operator, which means

77

L

'look in the following memory location'. The query is followed by the
address of the memory location we want to examine. Thus:

PRINT ?#C000

will look at the location whose address is #C000, and print out its
value, which will be 60 (the start of the interpreter}. Try loocking at
the contents of other memory locations; they will all contain numbers
between 0 and 255.

It is often convenient to look at several memory locations in a
row. For example, to list the contents of the 32 memory locations from
#80 upwards, type:

FOR N=0 TO 31; PRINT N?#80; NEXT N

The value of N is added to #80 to give the address of the location
whose contents are printed out; this is repeated for each value of N
from 0 to 31. Note that N?#§0 is identical to 2(N+#80).

11.4.2 Changing Memory Locations

A word of caution: although it is quite safe to look at any memory
location in the computer, care should be exercised when changing
memory locations. The examples given here specify locations that are
not used by the BASIC interpreter and operating system; if you change
other locations, be sure you know what you are doing or you may lose
the stored text, or have to reset the computer. :

Pirst print the contents of #80. The value there will be whatever
was in the memory when you entered BASIC, because BASIC does not use
this location. To change the contents of this location to 7, type:

?#80=7
To verify the change, type:
PRINT 72#80

Try'setting the contents to other numbers. What happens if you try to
set the contents of the location to a number greater than 2557

11.5 Numbers Representing Characters

If locations can only hold numbers between (0 and 255, how is text
stored in the computer's memory? The answer is that each number is
used to represent a different character, and so text is simply a
sequence of numbers in successive memory locations. There is no -danger
in representing both numbers and characters in the same way because
the context will always make it clear how they should be interpreted.

To find the number corresponding to a character the CH function
can be used. Type:

PRINT CH"A"

and the number 65 will be printed out. The character "A" 1is
represented internaliy by the number 65. Try repeating this for B, C,
D, E... etc. You will notice that there is a certain regularity. Try:

PRINT CH"O"

and repeat for 1, 2, 3. 4 ... etc..

11.6 Printing a Character

The operating system c¢ontains routines for the basic operations of
printing a character to the VDU, and reading a character from the
keyboard, and these routines can be called from assembler programs or
directly form the EASIC interpreter using the LINK statement. The:
addresses of these routines are standardised throughout the Acorn

78 . t

wdd SISV TV ST Iddddddddiddddddd

range of sbftware;_and are as follows:

Name Address Function
OSWRCH #FFF4 Puts character in accumulator to output (VDY)
OSRDCH #FFE3 Read from input (keyboard) into accumulator

In each case all the other registers are preserved. The names of these
routines are acronyms for 'Operating System WRite CHaracter' and
'Operating System ReaD CHaracter' respectively. All output generated
by BASIC's PRINT statement goes to OSWRCH, and all input to BASIC's
INPUT statement comes from OSRDCH.

11.7 LINK Statement

The LINK statement allows the interpreter to execute a machine code
subroutine. The processor's A, X and Y registers are initialised to
the least significant bytes of the variables A, X and ¥, but no result
is returned from the machine code subroutine. The subroutine can end
with an RTS instruction or can execute a BRK instruction to cause an
error and stop the interpreter. For example, to print character #21 (a
I!') .

A=#21; LINK#FFF4

11.8 Controlling the Outside World

A Versatile Interface Adapter, or VIA, can be added to the computer on
an Acorn V.I.B. to provide two eight-bit parallel I/O ports, together
with four control lines, a pair of interval timers for providing real
time interrupts, and a serial to parallel or parallel to serial shift
register. Both eight-bit ports and the contreol lines are connected to
side B of the connector. The operating system can use the VIA as a
Centronics printer interface.

Each of the 16 lines can be individually programmed to act as
either an input or an output. The two additional control lines per
port can be used to control handshaking of data via the port, and to
provide interrupts. Several of the lines can be 'controlled directly
from the interval timers for generating programmable frequency sguare
waves or for counting externally generated pulses. Only the most basic
use of the VIA will be explained here; for more of its functions
consult the VIA data sheet (available from Acorn Computers) and the
V.I.B. technical manual. The VIA registers occur in the following
memory addresses: '

Register Address Name R
Data Register B #CO0O0 DB - i
Data Register A #C01 DA
Data Direction Register B #C02 DDRB: o
Data Direction Register A #C03 —DDRA —— 71 Lk ¥ 0P
Timer 1 low counter, latch *#C04~ TICL
Timer 1 high counter ' $CO5 - T1CH
Timer 1 low latch - #C06 > T1LL
Timer 1 high latch «#C07~ T1LH S
Timer 2 low counter, latch #C08» T2CL
Timer 2 high counter $#C09 - T2CH
Shift Register #COA SR _

Auxiliary Control Register #CO0B— ACR !
Peripheral Control Register #COC PCR
Interrupt Flag Register #COD IFR
Interrupt Enable Register #COE IER
Data Register A - $COF DA

On reset all registers of the VIA are reset to 0 (except Tl, T2 and
79

SR). This places all peripheral lines in the input state, disables the
timers, shift register, etc. and disables interrupts.

11.8.1 Printer Interface

Port A has a high current output buffer leading to a 26-way printer
connector to produce a Centronics-type parallel interface, capable of
driving most parallel-interface printers with the software already in
the operating system. Printer output is enabled by printing a CTRL-B
character, and disabled by printing a CTRL-C character; see Section
10.1. -

11.8.2 Parallel Input/OCutput

To use the ports in a simple I/0 mode with no handshake, the Data
Direction Register associated with each I/O register must be
programmed. A byte is written to each of the DDR's to specify which
lines are to be inputs and outputs. A zero in a DDR bit causes the
corresponding bit in the I/O register to act as an input, while a one
causes the line to act as an output. Writing to the data register (DA
or DB) will affect only the bits which have been programmed as
outputs, while reading from the data register will produce a byte
composed of the current status of both input and output lines.

In order to use the printer port for handshaked I/0, the printer
software driver must be removed from the output stream by setting the
vector WRCVEC (address #208) to WRCVEC+3; e.g.: :

- 1$208=!14208+3

It is fatal to execute this statement more than once !!!. For
ordinary, non-handshake, I/0 the vector need not be changed, but you
should avoid turning the printer on.

11.8.3 Writing to a Port

The following program illustrates how to write to one of the VIA's
output ports from a BASIC program:

20 ?#C0C=0-"
30 ?#CO2=#FF -

40 INPUT J o :
50 ?§C00=J. t
60 GOTO 40

Description of Program:

20 Remove all handshaking

30 Program all lines as outputs

50 Output bytes.

11.8.4 Timing to 1 Microsecond

The following program demonstrates how the VIA's timer 2 can be used
to measure the execution-time of different BASIC statements to the
nearest microsecond. The same method could be used to time events
signalled by an input to one of the ports:

10 REM Microsecond Timer

20 B=#C08

30 '{B=65535

40 X=Y

50 B?3=32;Q=1B&#FFFF

60 PRINT 65535~0-1740 " microseconds™'
70 END

80

SEIVTTITSSTTT TSIV IS addd

Description of Program:

20 Point to timer 2 in VIA

30 Set timer to maximum count

40 Line to be timed; if absent, time should be 0

50 ' Turn off timer; read current count

60 Print time, allowing for time taken to read count.

11.8.5 Music Program'

The "following program demonstrates how the VIA's timer 1 can be used
to generate programmable frequency tones. PB7 (pin 17) of the VIA
generates a programmable frequency square wave, which can be connected
directly to a 16 ohm loudspeaker. The program uses a BGET 0 statement
to read a key from the keyboard; if you have a cassette operating
system, this should be replaced by-

LINK#FFE3 N—’#E2l

Also, the cassette operatlng system cannot cope with the way that the
program uses files: ‘

10 B=4#C00 #0f2 «tee Oubpto E@ﬁhﬁg

20 B?22=255

30 BPLl=gco —— Awx ool = CF # P

40 B14=0 AN ey o SRs (L, ' _ Gas b T
50 T=TOP;A=4545;REM COUNT FOR 220 HZ A !

55 $=10594; L=8%12% 22 AN

60 N=A*2; {T=N;REM STARTING NOTE s wF

70 FORF=2TOL Sngz s N=N*10000/S; IE=N;N. s %m&

75 E=T+L+6; ! E=#04030201;E!4=4100C080%6 o

80 Q=E+8; $0="2ZSXCFVGBNJIMK ";P=Q+LENQ+1 i<

85 $P="A A#B C C#D D4E F F#G G * 0 ™e p

90 S=P+LENP+1;REM STAVE e

100 $S=0;REM TUNE END
102 A=0;REM PLAY IT OFF
105 M=0;REM INSERTION
110 O=CH"0";REM LOWEST OCTAVE
115 D=CH"0";REM NOTE TIME
118 GOS.f
120 DO?#407=0; 2#40E=D
140 P.$21;N=BGETO0;P.$6;IFN=13 GOS, p,U 0
141 IFN=CH"Q" D=48;U.0 S
142 IFN=CH"W" D=49;U.0 - T
143 IFN=CH"E". D=50;U.0 ' : 8“?f¢ A
144 IFN=CH"R" D=51;U.0
145 IFN=CH"T" D=52;U.0 R L . CLTE
146 IFN=CH"Y" D=53;U.0 :
147 IFN=CH"U" D=54;U.0
148 IFN=CH"I" D=55;U.0
150 IFN>=CH®0"ANDN<=CH"7" O=N;U.0
153 IFN=CH"["A=1 . o —.
155 IFN=CH"]"A=0 L S
160 IFN=CH"-"M=M-3;P. $8$8$8$8$8 U.0 '
161 IFN=62GO0S.d;GOS.f;C=FO.$C;F,F= 0TOM+4;BP.C,S?F;N.;SH.C;U.0
163 IFN=60GOS.d;C=FINSC;F. F=0TOEXTC ; S?F=BGETC;N. ; SH.C;GOS. £:U.0
165 IFN=10M=0;GOS.f;U.0
170 IFN=#7FM=M-3; S'M—O P.$127$127$127$127§127;U0.0
. 180 X=-1;DOX=X+1;IFQ?X=13 UNTIL1;UNTILO
190 UNTILQ’X—N U=SIM; S?M=0; S°(M+1)-x S2(M+2)=D
200 IFA GOS.n
205 IFA=0 GOS.m

81

210 M=M+3;IFU=0 SIM=0

220 UNTILO
1000 pM=0:P.$30'?;IF!S=0 RETURN

1010 DOGQS.n;M=M+3;UNTILM!S=0;RETURN

2000 nW=0:IFS?(M+1)<>12W=T!((S?M&15*12+S?(M+1))*2)&#FFFF
2010 B!6=W;FORX=0TOE?(S?(M+2)&15)*300;N. :
2020 B!6=0;FORX=X TOOSTEP-15;N.

2030 mP.$S?M$S?2(M+2)" "$P?(S?(M+1)*2)$P?(S?(M+1)*2+l)
2040 RETURN - ,

4000 4C=S+M+4;PRI 7' ' $N; INPUT™ NAME "$C;RETURN

4010 fP.$12"OCTAVE NOTE "t

4020 eM=0;IFS!M=0 RETURN :

4030 DOGOS.m;M=M+3;UNTILS!M=0;RETURN

pescription of Program:

10-70 Create the frequency values for the 8 octaves

75-118 Set up variables and screen before entering main loop
120 Poke octave and duration to screen

140 Get key from keyboard

120-220 Main loop of program
1000-1010¢ p: Play out tune
2000-2020 n: Play current note

2030 m: Print current note
4000 d: Get file name

4010 f: Print out tune.
Variables:

A - Base note frequency/ play mode truth value
- Pointer to VIA '

- Used for free space string

- Current note length

- Vector of note lengths

- Local variable :

- Number of bytes required for 8 octaves
- Position of end of tune vector

Input key K

- Current Octave

- String of note characters for display
- string of input keys for notes

- Stave vector

- Vector of values for each note

- Note value to be played

- Loocal search variable.

MEHnOoONoOZRrmMEOOW
|

The keys 0 to 7 program the octave that the notes are in. Q, W, E, R,
T, ¥, U, I program the note length, in order of increasing duration.
Keys Z, S, X, C, F, V, G, B, N, J, M, K represent the notes A, A#, B,
Cc, C¢, D, D¥, E, F, F#, G, G4 respectively in the current octave. The
space bar introduces a rest of the current note duration. The -1 key
moves the cursor back over the tune so that notes can be edited. The
DELETE key deletes the note. The RETURN key plays out the current
tune, and the LINE FEED key writes out the current tune. The '>' saves
and the '<' loads a tune to or from a specified file on disk. e
turns echo mode on, 'l]' turns echo mode off. Notes are displayed as
OCTAVE LENGTH NOTE. . . - N o

Since the program disables the screen, you may need to type an ACK
to enable output. If you press ESC during a tune, the neoise can be
. stopped by either RUNning the program again, or typing B!6=0.

82

- o o T

» W A M T AT

e M

SYIJIITISS STV SI TSI daddd

11.9 Cbntrdlling.the Screen

The Acorn teletext VDU has a 6845 screen controller on board. BASIC
can be used to reprogram the screen controller to provide different
screen formats, cursor shape control, llght pen control, and screen
on/off. A brief descrlptlon of the 6845 is given here: a comprehen51ve
description is given in Acorn Computer's 6845 data sheet.

The 6845 is programmed through two reglsters. one is the address
register, at location #800, and the other is the data register at
location #801. The data in the address register determines which of
the 18 internal registers the data register represents. The registers
are: -

Register Function Initial Value for Teletext Card
#00 Horizontal Total #3F
#01 Horizontal Displayed #28 : o
#02 H Sync position #33 y
#03 Sync Width #44 . .
#04 Vertical Total #1E -
#05 Vertical Total Adjust #02 - ‘ :
#06 Vertical Displayed - #19 g _ -
#07 V Sync position #1B
#08 Interlace and Skew #03
#09 No. of scan lines #12
#0A Cursor start and flash #72
#0B Cursor end _ - #13

#0C Screen start address H
#0D Screen start address L
#0E Cursor address H

#0F Cursor address L

#10 Light pen address H
#11 Light pen address L

To program registér YY with contents XX from BASIC, execute
1 #800=#10XXYY | B
To reset all 6845 registers output a form feed (character 12).

11.8.1 Reprogrammlng the Screen Format

Note that the operating system software VDU drlver will still assume
the original number of rows and columns.
Example, a screen with-only 16 rows of 32 columns

!#800=#102001;!#800=#101006

11.9. 2 Reprogrammlng the Cursor

The number of video lines -and the flashing rate of the cursor may be
changed. Examples:

Cursor off: _ A,iﬁQQA#101F0

Flashing underline: ~!14$800=$#10720A
Static underline: 1#800=#10120A"
-8tatic block: 1#800=#10000A
Flashing block: - 14800=#10600A

Fast flashing block: !#800=#10400A

11.9.3 Readlng the Light Pen

The " last known position' of the llght pen on the screen, in terms of
the row and column, may be found:

83

10 A=TOP;B=A+4; !A=0;B=0;C=#800
20 ?C=#10;A?1=C?1 .
30 ?C=#11;?2A=C?1

40 2C=#C;B?1=C?1

50 ?C=#D;?B=C?1l

60 A=A-B.

70 B=A/40;REM row

80 A=A%40;REM column

11.9.4 Screen On/Off

| The screen display can be turned off, characters written to the VDU,
and the screen display turned back on again: ' o

1$#800=#100006;REM screen off
1#800=#101906;REM screen on

11.10 Using Teletext Characters

.~ The teletext standard VDU in the standafd'Systéms Two and Three
produces coloured alphanumerics -and graphics characters as well as
some other features. The options are as follows:-—

Decimal Hex Function
129 #81 Red. alphanumerics
130 $#82 Green alphanumerics
131 #83 Yellow alphanumerics

- 132 #84 Blue alphanumerics.
133 - #85 Magenta alphanumerics
134 #86 Cyan alphanumerics
135 #87 White = alphanumerics
136 #88 Flash
137 #89 Steady , :
138 #8A End box- o) '
139 #8B Start box . '
140 #8C Normal height L
141 48D Double height G B
145 #91 Red graphics ' T l
146 $§92 Green graphics T:“ e
147 $#93 Yellow graphics . f ot T
148 #94 Blue graphics ¢@>ﬁ?
149 - #95 Magenta graphics. “6
150 496 Cyan graphics
151 - $#97 ° White graphics
152 = #98 Conceal display
153 #99 —~ Contiguous graphics
154 #9A Separated graphics -
156 #9C Black background
157 #9D New background
158 #9E Hold graphics
‘159 #9F Release graphics

These characters only affect the characters on the right of them on a
line, and provide the following options:- ' '

Alpha (colour) causes following characters on the line to be
“alphanumeric characters in the colour specified

84

SIJVETIISEET VB ddddddddadddd

Graphics (colour) causes following characters on the line to be
graphics characters in the colour specified. 'In
graphics mode, each character space is divided
into 6 cells, and each cell is 'on' if the
corresponding bit in the character code is set.
The assignments are:

| b0 | bl |
1 b2 | b3 |
| ba | b6 |

Bit 5 in the code must always be set for a
graphics character. If bit 5 is clear, then the
upper case alphabetlc characters are available.

rFlash _ ~_ causes the follow1ng characters on the line to
- S flash
Steady ' causes the following characters on the line not to
_ flash
Start & End box ~ 'optiéns for using the VDU board to superimpose text
: onto a normal TV picture:
Double height dupllcatlng a line with a double height character
: on it will cause a line twice as tall as usual
Normal height : allows single height characters to appear on the
. : upper line of a double helght pair
Conceal display . following characters are not displayed unless the

VDU board recieves a REVEAL command along its
serial lnterface

Separated graphics causes the cells in graphics mode to be separated

Contiguous graphics -causes the cells in graphics mode to be in their
normal (connected)} mode

New background sets the background to the colour of the last
: colour specifying character

Black background resets'the_background.to black

Hold graphics normally, control characters appear as spaces on
. the screen. This option causes control characters
- to appear as the last entered graphics character

Release graphics causes control characters to be displayed as a
space.

The VDU assumes a setting of alpha white, steady, end box, normal
height, centiguous graphics, black background, and release graphics,
at the start of each line

.For example, the following program writes out 'Acorn Computers' in
yellcw and green flashlng double helght letters: .

85

10 PRINTS§1365141

20 GOSUBa

30 PRINTS1365141

40 GOSUBa

50 END . _ _
100 aPRINTS$130"Acorn"$131"Computers""'
110 RETURN

11.10.1 Plotting with Teletext Characters

When the teletext screen is operating in its non-scrolled position
(just after a form feed), we can use BASIC to draw lines in the
graphics characters. The VDU should be set up with the following
routine:

10 PRINT $12

20 FORZ=0TO24*40STEP 40

30 Z?#400=135;NEXT

40 S=TOP; !S=#8040201;S!4=%#4010

Then this subroutine calculates values for the particular bit
specified by the (x,y) coordinates, the origin being at the bottom
left: ' '
100 pP=X/2+(74-Y)/3*40+#401;C=S?(X&1+(74-Y)$3*2);RETURN

We may change‘the bit in one of three wéys: |

PP=2 switch bit on

?P=2P:C change state of bit

?P=?P&{C:~1) switch bit off

"As an example, the following program draws a random lissajou pattern
in a random colour: S s :

.10 8=TOP; !1S=#8040201;S:4=#4010
20 C=ABSRND%7+#91; V-ABSRND%11+5
30 W=ABSRND%11l+5
40 PRINTS$12;FORZ= 0TO24*4OSTEP40
50 Z?2#400=C;NEXT
60 R=34000;T=10000
70 Q=R;U=0;D=1000;E=D
80 DOR—R+T/W T—T—R/W Q=0Q+U/V; U—U /v
90 X=R/D+36;Y=Q/E+39; GOSUBp,?P=?PIC
100 UNTILO
200 pP—X/2+(74-Y)/3*40+#401-c—s9(X&1+Y%3*2) RETURN

Description of program:

10 Initialise cell vector

20-30 Choose random colour and random fregquencies for the two waves
generating the lissajou pattern :

40-50 Set screen to graphics colour :

60-70 - Initial values for successive approxlmatlon sine and cosine
'generators

80 One step in each of the sine and cosine generators

90 Plot a point in the pattern

200 Point subroutine.

86

SJEJVTITEEV TSI TSIy dasadd

11.11 Reading the keyboard
The keyboard on a System 2 or 3 is available at address #E21 as ASCII
data. If the byte is negative, no key is currently pressed. Examples
of this:

10 DOPRINT"Acorn ";UNTIL2?#E21=CH" "

20 DOPRINT*Coiiputer ";UNTIL?#E21<128

87

LUl r sl daa gy idld

Chapter 12 - cl12 28/7/80

12.0 MORE SPACE AND MORE SPEED

This chapter shows how to abbreviate programs so that they will fit
into a smaller amount of memory, and how to write programs SO that
they will run as fast as possible. ‘

12.1 Abbreviating BASIC Programs

Most versions of BASIC demand a large amount of redundancy. For
example, the command PRINT must usually be specified in full, even
though there are no other statements beginning with PR. In Acorn BASIC
it is possible to shorten many of the statement and function names and
omit many unnecessary parts of the syntax, in order to save memory and
increase execution speed. The examples in this manual have generally
avoided such abbreviations because they make the resulting program
harder to read and understand, but a saving of up to 30% in memory
space can be obtained by abbreviating programs as described in the
following sections. ' : :

12.1.1 Stétements and Functions

‘All statement and function names can be abbreviated to the shortest

sequence of characters needed to distinguish the name, followed by a
full stop. This does not speed the interpretation up noticeably, but
will save space. The following abbreviations are possible:

Name Abbreviation
ABS A,
AND A.
BGET B.
BPUT B.
CH

COUNT C.
DO

END E.
EXT B®,
FIN F.
FOR F.
FOUT FO.
GET G.
GOSUB GOS.
GOTO G.
IF

INPUT IN.
LEN L.
LET : L.
LINK LI.
LIST L.
LOAD LO.
NEW N.
NEXT N.
OR

PRINT P.
PTR ' '

8

PUT

REM

RETURN R.
RND R.
RUN '

SAVE SA.
SGET S.
SHUT . SH.
SPUT SP.
STEP - 8.
THEN ' T.
TO

TOP T.
UNTIL u.

12.1.2 Spaces

Spaces are largely erelevant to the operatlon of the BASIC
interpreter, and they are ignored when encountered in a program. Their
only effect is to cause a 13 microsecond delay per space in execution.
‘There is one place where a space is necessary to avoid an ambiguity as
- in the following example:

"FOR A=B TO C

where the_spece after B is compulsory to make it clear that B is not
-the first letter of a function name.

12.1.3 LBT

Some - BASICs demand that every a551gnment statement begln with the word
LET' 2. goo_'. :

LET A=B -

In Acorn BASIC the LET statement may be omltted “with a decrease in
_ executlon tlme...

12.1.4 THEN

The word THEN. in the second part of an IF statement may be omitted.
Example:

IF A=B C=D
is perfectly legal. However, note that if the second statement begins
with a T, or a '"?' or '"!' unary operator, some delimiter is necessary-

IF A=B THEN T=Q

Alternatively a statement delimiter ';' can be used as the delimiter:
IF A=B; T=Q

‘Using a ';' is slower than a THEN or T..

12.1.5 Brackets

Brackets enclosing a function argument, or an array 1dent1f1er, are

unnecessary and may be omitted when the argument, or array subscrlpt,
is a single variable or constant,

For example ABS(RND) may be written ABSRND, but ABS(B+2) cannot be
abbrevxated :

12.1. 6 Commas

The commas separating elements in a PRINT statement . can be omitted
when there is no amblgulty. Examplie:

90

¢

R R R R R R

PRINT A,B,C,"RESULT",J

may be shortened to:
PRINTA B C"RESULT"J

Note that the comma in:
PRINT &A,&B
is, however, necessary to distinguish the numbers from the single
number (A&B)} printed in hex.
12.1.7 Multi-Statement Lines

Each text line uses one byte per character on thée line, plus two bytes
for the line number and a one-byte terminator character; thus writing
several statements on one line saves two bytes per statement. Note
that there are two occasions where this cannot be done:

1. After an IF statement, because the statements on the line following
the IF statement would be skipped if the condition turned out false

2, Where the line number is referred toc in a GOTO or GOSUB statement.

12.1.8 Control Variable in NEXT

The FOR...NEXT control variable may be omitted from the NEXT
statement; the control variable will be assumed to be the one
specified in the most recently activated FOR statement.

12.2 Maximising Execution Speed

Acorn BASIC is one of the fastest BASIC interpreters available, and
all of its facilities have been carefully optimised for speed so that
calculations will be performed as quickly as possible,

‘To obtain the best possible speed from a program the following
hints should be borne in mind; but note that many of these suggestions
reduce the legibility of the program, and so should only be used where
speed is critical: -

1. Use the FOR ... NEXT loop or DO ... UNTIL loop in preference to an
IF statement and a GOTO '

2. Use labels, rather than line numbers, in GOTO and GOSUB statements

3. Avoid the use of constants specified in the body of programs;
instead use variables which have been set to the correct value at the
start of the program. For example, replace: '

A=A*]1000
by: -
T=1000

A=AX*T

4, Write statements in-line, rather than in subroutines, when the

subroutines are only called once, or when the subroutine is only two
or three lines o _

5. If a calculation is performed-every'time around a loop, make sure
that the constant part of the calculation is performed only once
outside the loop. Example: '

FOR J=1 TO 10

91

FOR K=1 TO 10
PRINT J*J+K
NEXT K

NEXT J

could be written as:

FOR J=1 TO 10
Q=J*J
FOR K=1 TO 10
PRINT Q+K
NEXT K

- NEXT J

6. Where several nested FOR ... NEXT loops are being executed, and the
order in which they are performed is not important, arrange them so
that the one executed the greatest number of times is at the centre.
Example:

FOR J=1 TO 2
FOR K=1 TO 1000

NEXT K
NEXT J

is faster than:

FOR K=1 TO 1000
FOR J=1 TO 2

NEXT J
NEXT K

because in the second case the overhead for setting up the inner loop
is performed 1000 times, whereas in the first example it is only
performed twice '

7. Choose the FOR ... NEXT loop parameters so as to minimise
calculations inside the loop. Example:

FOR N=0 TO 9
PRINT A!(N*4)
NEXT N

could be rewritten as the faster:

FOR N=0 TO 36 STEP 4
PRINT AN
NEXT N

8. Use word operations rather than byte operations where possible. For
example, to clear a section of memory to 0 it is faster to execute:

FOR N=#8000 TO #9000 STEP 4; !N=0; NEXT N
than the following: '
FOR N=#8000 TO #9000; ?N=0; NEXT N

92

P R e, O Y. Y WY . Y.)

JUJ VTSSO UEdINddedddiddd

9. The IF statement containing several conditions linked by the AND
connective, as, for example:

IF A=2 AND B=2 AND C=2 THEN

will evaluate all the conditions even when the earlier ones are false.
Rewriting the statement as:

IF A=2 IF B=2 IF C=2 THEN

avoids this, and soc gives faster execution.

93

VITITIGISS Iy ddidvavididsaiidd

Chapter 13 - ¢cl13 28/7/80

13.0 WHAT TO DO IF BAFFLED

This section is the section to read if all else fails; you have
studied your program, and the rest of the manual, and you still cannot
see anything wrong, but the program refuses to work. :

There are two types of programming errors: errors of syntax and
errors of logic. : i : '

13.1 Syntax Errors

Syntax errors are caused by writing something in the program that is
not legal, and that is therefore not understood by the BASIC
interpreter. Usually this will give rise to an error, and reading the
description of that error code in Chapter 18 should make the mistake
obvious. ' :

Typical causes of syntax errors are:

1. Mistyping a digit '0' for a letter 'O', and vice-versa. E.g..
FOR N=1 TO 3 '

2. Mistyping a digit 'l' for a letter 'I', and vice-versa. E.q.
1F J=2 PRINT "TWO" ' '

3. Forgetting to enclose an expression in brackets when it is used as
a parameter in a statement, E.g.
ABS X+32

In some cases a syntax error is interpreted as legal by BASIC, but
with a different meaning from that intended by the programmer, and no
error message will be given. E.gq. '
IFA=0 THEN PRINT "ZERO" ,
was intended to test A to see if it was zero, but in fact tests for
equality with the variable 0. '

13.2 Logical Errors

Errors of logic arise when a program is perfectly legal, but does not
do what the programmer intended, probably because the programmer
misinterpreted something in this manual, or because a situation arose
that was not foreseen by the programmer. Common logical errors are:

l. Unitialised variables. Remember that the variables A-Z initially
contain unpredictable values, and so all the variables used in a
program should appear on the left-hand side of an assignment
statement, in an INPUT statement, or as the control variable in a FOR
... NEXT loop, at' least once in the program. These are the only places
where the values of variables are changed

2. The same variable is used for two purposes. It is very easy to
forget that a variable has been used for one purpose at one point in
the program, and to use it for another purpose when it was intended to
save the variable's original value. It is good practice to keep a list
of the variables used in a program, similar to the list given after
the application programs in this manual, to avoid this error

3. Assigning to a string variable and éxceeding the allocated space.
Care should be taken that enough space has been allocated to string

95

variables to receive the strings allocated to them

4. Assigning outside the bounds of a vector. Assigning to vector
elements above the ‘range allocated will overwrite other vectors, or
strlngs

5. Mistaking the prlorlty of the '"!' and '?' operators. A!4*5 is not
equivalent to 5%At4; the first is (A14)*5 and the second is (5*A)!4.

13.3 Suspected Hardware Faults

This section deals with faults on an Acorn Computer which is
substantially working, but which exhibits faults which are thought to
be due to hardware faults rather than programming faults. Hardware
fault-finding details are provided in the various technical manuals;
this section describes only those hardware problems that can be tested
by running software diagnostics.

13 3.1 RAM Memory Faults

The- follow1ng BASIC program can be used to verify that the computer's
memory: is working correctly: :

-1 REM MEMORY TEST
10 INPUT"FROM"A," TO"B
200 DO ?11=0; R=18 .
30 FOR N=A TO B STEP4; IN=RND; NEXT N
35 ?11=0; !8=R
40 FOR N=A TO B STEP4
50 IF !N<>RND PRINT'"FAIL AT "&N'
60 NEXT N
70 P." OK™; UNTIL 0

‘The first address entered should be the lowest address to be tested,

and the second address entered should be four less than the highest

" address to be tested. For example, to tes%;4K memory f£rom #2000 to

#2FFF enter:

>RUN | EOEL

FROM?#2000 ™
‘I'O"#ZFFF’B

The .program stores random numbers in the memory locations, and then
re=-seeds the random—number generator and checks each location is
correct.

13.3.2 ROM Memory Faults

' The BASIC interpreter in 4K ROM could be at fault although as all ROMs
are tested before despatch it is very unlikely that a fault can be

present. However, if a user suspects a ROM fault the following program
should be entered and run; the program obtains a 'signature' for the
whole ROM, this signature consisting of a four-digit hexadecimal
number : ' '

1 REM CRC Signature

10 INPUT "PROM ADDRESS", P

20 C=0; Z=#FFFF;Y=#2D

30 FOR Q=0 TO #FFF

35 A=P?2Q

40 FOR B=1 TO 8

60 C=C*2+4A&l;A=A/2; IFC>Z c-c Y C—C&Z
80 NEXT B; NEXT Q@
llO'PRINT.”SIGNATURE”IS? &C!

96

HJIJVEE ISV UVEIsdddiddd

120 END

Sample run:

>RUN _

PROM ADDRESS?#C000
SIGNATURE IS 193F

>

If this signature is obtained the ROM is correct, (to say nothing of
it having run the program}.

97

{

VIS o sodaiadd

Chapter 14 - cl4 28/7/80

14.0 EXTENDING THE BASIC

At the time of writing, Acorn have two e¢xtension floating point
programs, and the ONLI extension. The addition of one of thése
extensions does not alter any of the functions of the original BASIC
interpreter.

14.1 Floating-Point Extension to BASIC

The floating-point extension adds 27 new variables, %@ and %A to %%,
and the following special statements and functions to the existing
integer BASIC. Due to Acorn's flexibility there are several versions
of the floating-point package, and only the minimum set of operations
is given below: :

'Floating—Point Statements
FIF, FINPUT, FPRINT, FPUT, FUNTIL, STR

Floating-Point Functions

ABS, ACS, ASN, ATN, COS, DEG, EXP, FGET, FLT, HTN, LOG, PI, RAD, SGN,
SIN, SQR, TAN, VAL '

Floating-Point Operators

1, 8, ".

The two versions currently available differ in providing either
graphics PLOT, DRAW and MOVE for the teletext VDU, or floating point
arrays and degree to radian conversions. The version with arrays
requires two locations to be set up at the start of the program:

10 ?#23=TOP; 24 24=TOP /256

in order to allocate space for the arrays after the program, ,

All the extension statements and functions, except FLT, and all
the extension operators expect floating-point expressions as their
arguments. '

Whenever the context demands a floating-point expression, or
factor, all calculations are performed in floating-point arithmetic
and all integer functions and variables are automatically floated. An
integer expression may be explicitly floated with the FLT function,
which takes an integer argument. For example:

FPRINT FLT(2/3)

will print 0.0 because the division is performed in integer arithmetic
and then floated. Therefore:

FPRINT FLT(PI)

will convert PI to an integer, and then float it, printing 3.00000000.
When the context demands an integer expression, or factor, alil

calculations are performed in integer arithmetic, and floating-point

functions will be automatically converted to integers. For example:

PRINT SQR({10)

99

will print 3. Floating-point expressions used in an integer context
must be fixed by the '%' operator. For example:

PRINT %(3/2+1/2)

will print 2, since the expression is evaluated using floating-point
arithmetic and then fixed, whereas:

PRINT 3/2+1/2

will print 1, since in each case integer division is used.

Since there are both integer and floating-point versions of the
‘ABS function, the context w111 determlne how its argument is
evaluated. For example:

PRINT ABS(2/3+1/3)
will print 0, whereas:
FPRINT ABS(2/3+1/3)

will print 1. 00000000. The. floatlng-pOLnt functlon may be obtained in
an ‘integer context by prefixing it with the '%' operator. Thus:

PRINT %ABS(2/3+1/3)
will print 1.

14.1.2 Floating—Point Statements
FIF - Floating-point IF

Same syntax as IF, but connectives as AND and OR are not allowed.
Example-_

FIF %A < $B FPRINT %A " IS LOWER THAN " 3B

FINPUT Floatlng—p01nt Input FIN.

Exactly as INPUT, but - takes a -floating-point variable or array
element, and does not allow strings to be input. Example:

FINPUT"Your weight "%A
FPRINT ?1oeting—point Print | FP.
Exactly as PRINT except. that no §$ expressions are allowed, and all
expressions . are treated as floatlng-p01nt GXPIESSlonS. Floating-peint
‘numbers are printed out right justified in . a field size determined by
the value of @. Example:

FPRINT"You are "$H" metres tall™'’
FPUT Floating—point Put

FPUT writes the 5 bytes representlng a floatlng—p01nt number to the
sequential file whose handle is specified- by its argument Example:

FPUTA 2 32+l

FUNTIL Floating-point Unt11 ' FUO.

As UNTIL, but the connectives AND and OR are not allowed Matches with
DO statement. Example: : _ : _

DO%A-%A+ 1; FUNTIL%A>2_V'
STR = Convert to Strlng
-STR converts a floating-point expre331on into a strlng of characters.

“100

SYSTTTTEETY ll"&l'll'll"ll"ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'ﬂ'lf'ﬂf' SVSTTTEY

It takes two arguments, the floatlng point expression, and an 1nteger
expression which is evaluated to give the address where the string is
to be stored. Example:

STR PI, TOP
PRINT $TOP'
3.14159265 |

14.1.3 Floating-Point Punctions

ABS Absolute value
Returns the absolute value of a floating=point argument. Example:
~ FPRINT ABS -2.2
2.20000000
ACS Arc cosine
Returns arc cosine of argumeént, in radians. Example:
FPRINT ACS 1
0.0
ASN Arc sine _
Returns arc sine of argument, in radians. Example:
_ FPRINT ASN 1 ‘
1.57079633
ATN - Arc tangent
Returns arc tangent of argumeifit, in radians. Example-
FPRINT ATN 1
7. 85398163E 1
cos Cosine . ' ' C.
Returns cosine of angle in radians. Example: '
- FPRINT COS 1
5.40302306E-1 -
EXP Exponent | " E.
Returns exponent (i.e. e”<factor>). Example:
. FPRINT EXP 1 .
2.71828183 |
FCET FIOatlng—p01nt GET .
Same as GET, but reads five bytes from a ser1a1 file and returns a
floatlng-p01nt number.
FLT Float . F.

Takes an 1nteger argument and ¢onverts it to a floating-poznt number.
Example-

7 FPRINT FLT(4/3)

1.00000000

HTN = Hyperbolic tangent . H.
Returns the hyperbolic tangent of its argument. Example:

101

FPRINT HTN 1
7.615%94156E-1
LOG Natural logarithm L.
Returns the natural logarithm of its argument. Example:

FPRINT LOG 1

0.0
PI
- Returns the constant pi. Example:
_ FPRINT PI
'3.14159265

SIN Sine
Returns sine of an angle in radians. Example:
) 'FPRINT SIN PI |
0.0
SQR Square root
Returns ‘square root ‘of argument. Example"

' FPRINT SQR 2
1.41421356
TAN Tangent | T.
Returns tangent of angle in radians. Example:

FPRINT TAN PI . '

_ 0.0
VAL Value of String : V.
Returns a number representlng the string converted to a number. If no

number - is present, zero. will be returned. VAL will read up to the
first illegal character, and cannot cause an error. Example:

 FPRINT VAL "2.24"
2.20000000
-14;1.47F10ating—Point Operators"

1 - Floatlng—p01nt indirection ' {pling}

The floatlng—p01nt indirection operation makes it possible to set up
vectors of floating-point numbers. The .operator returns the five bytes
at the address specified by its operand. For example, to set up a
.floating-point vector of three elements:

A=TOP; %!A=PI; %!(A+5)=3; %!(A+10)=4

% Convert to integer o : {percent}

_The unary %.operator converts 1ts floatlng—p01nt argument to an
integer. Example:

 PRINT %(3/2+1/2)
2

-~ .

Raise to power = : {up arrow!}
Bina:y operator which raises its left-hand argument to the power of
102

FUJ VTV ST g vdsidsiddsddd

its right-hand argument; both arguments must be floating-point
factors. Example:

FPRINT 2732
4.29496728E9>

14.1.5 Floating—Point Variables

The floating-point variables %@ and %A to %Z are stored from #2800
onwards, five bytes per variable, thus taking a total of 135 bytes.
Thus; for example, a floating-point vector:

$142800
may be set up whose elements:

$1(#2800+0), %!(#2800+5), %! ($2800+10) ...
will correspond to thé variables:
@, %A, %B ... etc.

For example, the floating-point variables may be initialised to zero
by executing:

FOR J=0 TO 26*5 STEP 5
$1(#2800+7)=0
NEXT J

14.2 ONLI extension to BASIC

ONLI is a 2K extension to BASIC with extra operations added based on
the ONLI system, developed by Dr. Stephen Lea of the Cambridge
University Department of Experimental Psychology. The extra commands
are designed for control of experiments, and use the Acorn Laboratory
Interface to provide a real-time clock and isolated connections to the
experimental equipment. Its principal feature is that it allows the
programmer to specify a large number of states, such as a timed
interval, or waiting for an event, which, once set up, will behave
independently. For example separate outcomes can be programmed for
different inputs, and the arrival of one event does not stop the
system from looking for other events, unless specifically told to.

The system allows the specification of up to eight independently
running ¢locks, accurate to 10mS, and the specification of outcomes
for the switching of up to sixteen external events. Up to 32 lines can
be controlled each as inputs or outputs. A special function allows the
user to set a pattern of outputs, for a time measured in units of 200
microseconds, and wait for one of a set of specified inputs, returning
an accurate time in units of 200 microseconds. The standard PLOT, MOVE
and DRAW commands for the teletext VDU are also present.

103

AUJVIITISSI TV EIIVIddSayddadddaddd

v

Chapter 15 - ¢15 28/7/80

15.0 BASIC STATEMENTS, FUNCTIONS, AND COMMANDS

All the BASIC statements, functions, and commands are listed in the
following pages in alphabetié¢al order. Following each name is, where
applicable, an explanation of the name and the shortest abbreviation
of that name. The following symbols will be used; these are defined
more fully in Chapter 17:

<variable> - oné of the variables A to Z, or @.

<factor> =~ a variable, a constant, a function, an array, an
indirection, or an expression in brackets, any of which may
optionally be preceded by a + or - sign; e.g.:

A, -1234, ABS(12), A, (2%A+B).

<expression> - any arithmetic expression; e.g.:
A+B/2*(27~-R)&H.
<relational expression> - an expression, or a'pair of expressons linked
by a relational operator; e.g.:
A, A>=B, SA="CAT",
<testab1e expression> — any number of <relat10nal expressions>
connected by AND or OR; e.g.:
: A>B AND C>D.

<str1ng rlght> - a quoted string, or an expression optionally preceded
by a dollar; e.g.:

 "STRING", SA.

335 ‘ . Absolute value | A.

This function returns the absolute value of its argument, which is a
<factor>. ABS will fail to take the absolute value of the maximum
negative integer, -2147483648, since this has no corresponding
‘positive value. The most common use of ABS is in conjunction with RND
to produce random numbers in a specified range, see RND. Example:

PRINT ‘ABS-1,ABS(-1),ABS1,ABS(1)’
1 1 1 1
AND Relational AND : A.

_ ThlS symbol prov1des the logical AND operation between two <relational
-expresszon)s. Its form is <relational expression a> AND <relational
expression b> and the result will be true only if both <relational
expression>s are true. AND has the same priority as OR. Example:

IF A=B AND C=D PRINT"EQUAL.PAIRS“'

105

BGET Byte get : B.

This function returns a single byte from a random file. The form of
the instruction is:

BGET <factor>

where <factor> is the file handle returned by the FIN function. The
next byte from the random file is returned as the least significant
byte of the value, the other three bytes being 2zero. In the DOS the
sequential pointer will be moved on by one and the operating system
will cause an error if the pointer passes the end of the file.
Example:

A=FIN"FRED"
PRINT "THE FIRST BYTE FROM FRED IS "BGET A'

BPUT Byte put ' \ B.

This statement sends a single byte to a random file. The form of the
statement is: '

BPUT <factor>, <expression>

where <factor> is the file handle returned by the FOUT function; the
<expression> is evaluated and its least significant byte is sent to
the random file. If you are using the DOS, the random file's
sequential pointer will be moved on by one and the operating system

will cause an error if the length of the file exceeds the space
allowed. Example:

A=FOUT"FRED"
BPUT A, 23

CH Change character to number CH

This function returns the number representing the first ASCII
character of the string supplied as its argument. It differs from
straight use of the '?' operator in that it can take an immediate
string argument or an <expression>., Examples:

PRINT CH""'
13 (value of string terminating character)

PRINT CH"BETA™'
66

S=TOP; $S="BETA"
PRINT ?S,CHS$S,CHS'
66 66 66 ’

PRINT S?LENS,CHS$S+LENS'
65 65

COUNT Count of characters printed C.

This function returns the number of characters printed since the last
return, and is thus {usually) the column position on a line at which
the next character will be printed. COUNT is useful for positioning
table elements etc. Example:

DO PRINT"=";UNTIL COUNT=14
== = >

106

{

R R R R R R R R R K K]

DO Start of DO ... UNTIL loop DO

This statement is part of the DO...UNTIL control expression. As the
BASIC interpreter passes DO it saves that position and will return to
it if the UNTIL statement's condition is false. No more than 11 active
DO statements are allowed. See UNTIL for examples.

END End of program : E.
This statement has two functions:
1. Termination of an executing program

2. Resetting the value of TOP to point to the first free byte after
the program text. : ,

END can be used in direct mode to set TOP. Programs can have as many
END statements as required and they do not need to have an END
statement as a last line, although an error will be caused on
execution past the end of the program. See also TOP. Example:

IF $%="FINISH" END; REM conditional end

EXT Extent of random file : . E.

In the DOS this function returns the EXTent (length) of a random file
in bytes. The file can be either an input or an output file, and the
form of the instruction is '

EXT<factor>

where factor is the file handle found using either FIN or FOUT.

In the COS, execution of this function results in an error.
Example:

A=FIN"FRED" |
PRINT "FRED IS "EXT(A)" BYTES LONG"'

FIN © Find input , F.

In the DOS this function initialises a random file for input (with
GET, BGET and SGET) and updating (with PUT, BPUT and SPUT), and
returns a number which uniquely represents the file. This 'file
handle' is used in all future references to the file. Zero is returned
if the file does not exist. The file handle is only one byte long (1 -
255) and can be stored in variables or using ! or ?. Usage of a file

handle not given by the operating system will result in an error.
In the COS FIN causes an error.

FOR Start of FOR ... NEXT loop , F.

This statement is the first part of the FOR ... NEXT locp, which

allows a section of BASIC text to be executed several times. The form
of the FOR statement is:

FOR (a) = (b} TO (c) STEP (4)
where (a) is the CONTROL VARIABLE which is used to test for loop
completion

(b) is the initial value of the control variable

(c) is the limit to the value of the control variable

(d) is the step size in value of the control variable for
each pass of the loop; if omitted, it is assumed to be 1.

Items (b) (c) (d) are <expression>s; they are evaluated only once,
when the FOR statement is encountered, and the values are stored for
later reference by the NEXT statement. No more than 11 nested FOR
Statements are allowed by the interpreter. Examples:

107

FOR Z=0 TO 11

FOR @=X TO Y

FOR U=-7 TO 0

FOR G={X+1)*2 TO Y-100

FOR J=0 TO 9 STEP 3

FOR K=X+1 TO Y+2 STEP 1

FOR O=-10*ABSX TO -14*ABSY STEP -ABSQ

FOUT - Find output FO.

In the DOS this function initialises a random file for output {with
PUT, BPUT and SPUT), and returns a number which uniquely specifies the
output file. This ‘'file handle' is used in all future references to
the file. An error will occur if there is a problem associated with
using the file as an output file; e.g.

(a) write protected file

(b) write protected disc

(c) insufficient space in directory
(d) insufficient memory space.

The number returned is only one byte long (1-255) and can be stored in
variables or using ! or ?. Usage of a number not given by the
operating system will result in an error.

In the COS FOUT causes an error.

Example:

A=FOQUT"FRED"
IF A=0 PRINT "WE HAVE A PROBLEM WITH FRED"'

GET Get word from file . G.

This function reads a 32 bit word from a random file and returns its
value. The form of the instruction is:

GET<factor>

where <factor> is the file handle found with the FIN function. The
first byte fetched from the file becomes the least significant byte of
the value. ‘

In the the DOS the random file sequential pointer will be moved on
by 4 and the operating system will cause an error if the pointer
passes the end of the file.

Example: .

A=FIN"FRED"
PRINT "THE FIRST WORD FROM FRED IS "GET A'

GOSUB Go to subroutine T Ha mS. 3;\1478- coSs.

This statement gives the ability for programs to call subprograms. The
GOSUB statement stores its position so that it can come back later on
execution of a RETURN statement. Like GOTO it can be followed by a
<factor> whose value is a line number, or by a label. No more than 15
GOSUB statements without RETURNs are allowed. Example:

10 GOSUB a

20 GOSUB a

30 END .
100 a PRINT"THIS IS A SUB PROGRAM™'
140 RETURN '

When RUN this will print:
THIS IS A SUB PROGRAM
108 '

(R R R R R R R R R R KK

THIS IS A SUB PROGRAM
>

GOTO Go to line G.

This statement overrides the sequential order of program statement
execution. It can be used after an IF statement to give a conditional
change in the program execution. The form of the statement is either:

- GOTO <factor>
or - GOTO <label>

The GOTO statement can transfer to either an unlabelled line, by
specifying the line's number, or to a labelled line, by specifying the
line's label. Examples:

10 IF A=0 PRINT"ATTACK BY KLINGON "Z;GOTO x
20 PRINT"YOU ARE IN QUADRANT "X Y
30x PRINT'"STARDATE "T°

100m INPUT"CHOICE "A :
110 IF A<l OR A>9 PRINT"I!!!{I"; GOTO m
120 GOTO(A*200); REM GO EVERYWHERE !

IF If statement | IF

This statement is the main control mechanism of BASIC. It is followed
by a <testable expression>, which is a single byte. If TRUE (non-zero)
the remainder of the line will be interpreted; if FALSE {zero)
execution will continue on the next line. After the <testable
expression>, IF can be followed by one of two different options:

1. The symbol THEN, followed by any statement

2. Any statement, provided that the statement does not begin with T or
a unary operator '!' or '2'.

Examples:

IF A<3 AND B>4 THEN C=26

IF A<3 IF B>4 C=26; REM equivalent condition to above

IF A>3 OR B<4 THEN C=22; REM complementary condition to above

IF A>3 AND $S="FRED" OR C=22; REM AND and OR have equal priority

INPUT Input statement IN.

This statement receives data from the keyboard. The INPUT statement
consists of a list of items which can be:

(a) a string delimited by " gquotes

(b) any ' new-line symbols

(c) a <variable> or a $<expression> separated from succeeding
items by a comma.

Ttems (a) and (b) are printed out, and for each item (c) a '?' is
printed and the the program will wait for a response. If the item is a
<variable>, the response can be any valid <expression>; if the item
was a S$<expression>, the response is treated as a string and will be
located in memory starting at the address given by evaluating the
<expression>. If an invalid response is typed, no change to the
original is made. Example:

INPUT"WHAT IS YOUR NAME "STOP, "AND HOW OLD ARE YOU "A
When RUN this will produce:
WHAT IS YOUR NAME ?FRED

109

AND HOW OLD ARE YOU 2100

LEN Length of string L.

This function returns the number of characters in a string. The
argument for LEN is a <factor> which points to the first character in
the string. Valid strings have between 0 and 255 characters before a
terminating return; invalid strings for which the termirating return
is not found after 255 characters will return length zero. Example:

"$TOP="FRED"; PRINT"LENGTH OF "S$TOP" IS "LEN TOP'

LET Assignment statement _ : omit

This statement is the a551gnment statement and the word LET is
optional. There are two types of assignment statement:

1. Arithmetic
LET<variable>=<expression>
<variable>!<factor>=<expression>
<variablé>?<factor>=<expression>
1<factor>=<expression>
?<factor>=<expression>

2. String movement
LET$<expression>=<string right>

In each case the value of the right-hand side is evaluated, and then
stored as designated by the left~hand side. The word LET is not legal
in an array assignment.

LINK Link to machine code subroutine }4ga4n3. LI.

This statement causes execution of a machine code subroutine at a
specified address. Its form is: .

LINK <factor>

where <factor> specifies the address of the subroutine. The
processor's A, X and Y registers will be initialised to the least
significant bytes of the BASIC variables A, X and ¥, and the decimal
mode flag will be cleared. The return to the interpreter from the
machine code program is via an RTS instruction. Examples:

Q=TOP; !Q=#6058; LINK Q; REM clear interrupt flag
Q=TOP; !0=#6078; LINK Q; REM set interrupt flag
LINK #FFE3;REM wait for key to be pressed

LIST List BASIC text ’ _ L.

This command will list program lines in the current text area. It can
be interrupted by pressing ESC and can take any of these forms:

LIST list all lines

LIST 10 list line 10

LIST , 40 list all lines up to 40

LIST 100 , list all lines from 100

LIST 10,40 list all lines between 10 and 40

LOAD Load BASIC program ‘ 10.

This command will load a BASIC program into the current text area. Its
form is:

LOAD <string right>
and it will pass the string to the operating system and request the

-operating system to complete the transfer before returning (in case

110

t

JUJI I ddddddudddddiddidididdd

the transfer is by interrupt or direct memory access). Then the text
area is scanned through to set the value of TQOP; if the file was
machine code or data and not a valid BASIC program the prompt may not
reappear. Example:

LOAD"FRED"

NEW Initialise text area N.

This command inserts an 'end of text' marker at the start of the text
area, and changes the value of TOP accordingly. The OLD command
provides an immediate recovery. -
NEXT Terminator of FOR ... NEXT loop
Nc : -

This statement is half- of the FOR ... NEXT control loop. When the word
NEXT is encountered, the interpreter increases the value of the
control variable by the step size, and, if the control variable has
not exceeded the loop termination value, control is transfered back to
the statement after the FOR statement; otherwise execution proceeds to
the statement after the NEXT statement. The NEXT statement optionally
takes a <variable> which will cause a return to the same level of
nesting as the FOR statement with the same control variable, or an
error if no such FOR statement is active. Examples:

@=2
FOR Z=0 TO 9; PRINT Z; NEXT; PRINT'
01234567829

"

FOR Z=0 TO 9 STEP 2; PRINT %Z; NEXT Z%;PRINT'® /
02468 _
_ FOR Z=0 TO 9; PRINT Z; NEXT Y
0
Error 230
>
OR Relational OR 7 OR

This symbol provides the logical OR operation between two <relational
expression>s. Its form is <relational expression a> OR <relational
expression b> and the result will be true (hon-zero) if either
<relational expression> is true. OR has the same priority as AND.
Example:

IF A=B OR C=D PRINT"At least one pair equal"'

PRINT Print statement ' ' P.

This statement outputs results and strings to the screen. A PRINT
statement consists of a list of the following items:

‘(a) a string delimited by " quotes, which will be printed.

(b) any ' symbols which will cause a 'new line'.

(c} the character '&' which forces hexadecimal numerical print
out until the next comma. '

(d) an <expression> whose value is printed out in either decimal
or hexadecimal, right-hand justified in a field width defined by
RE-2 . .

(e) a $<expression>; if the value of the <expression> is between
0 and 255, the ASCII character corresponding to that value will
be printed out; otherwise the string pointed to by that value
will be printed out.

111

Examples:
PRINT'

PRINT"Hello"™*
Hello

PRINT 1°

PRINT 1'2'3"

W N

PRINT"40*25="40%25"
40*25= 1000

PRINTS$CH"e"!

PRINTS12

DO INPUT"Who are you "$TOP;PRINT"Hi "$TOP'; UNTIL S$STOP=""
Who are you ?fred
Hi fred
- Who are you ?

PRINT&0 10 20 30'
0 A 14 1E

PTR Pointer of random file PTR

In the DOS this function and statement allows the manlpulatlon of the
pointers in sequential files. Its form is:

PTR<factor>

where <factor> is the file handle found using FIN or FOUT, and it may
appear on the left-hand side of an equal sign or in an expression.

In the COS PTR will cause an error. :

Examples:

A=FIN"FRED"
PRINT PTR A'
0

PTRA=PTRA+23

PUT Put word to random file . PUT

This statement sends a four byte word to a sequential output file. The
form of the instruction is:

PUT <factor> , <expression)»

where <factor> is the file handle returned by the FOUT function. The
<expression> is evaluated and sent, least significant byte first, to
the sequential output file. The sequential output file pointer will be
moved on by four and the operating system will cause an error if the

length of the file exceeds the space allowed. Example: '

A=FOUT"FRED"
PUT A , 123456

112

R RN R R R R R R R R Y R Rl

f

REM Remark REM

This statement causes the interpreter to ignore the rest of the line,
enabling comments to be written into the program. Alternatively
comments can be written on lines branched around by a GOTO statement.

RETURN Return from subroutine _ : R.

This statement causes a return to the last encountered GOSUB
statement. See GOSUB for examples.

RND Random number ‘ S) " "R.

This function returns a random number between -2147483648 and
2147483647, generated from a 33 bit pseudo-~random binary seguence
generator which will .only repeat after over eight thousand million
calls. The sequence is not initialised on entering the interpreter,
but locations 8 to 12 contain the seed, and can be set using '!' to a
chosen startlng point. To produce random numbers in some range A to B -
use: _

ABSRND%(B"A)+A

RUN Execute BASIC text from beginning RUN

This statement will cause the interpreter to commence execution at the
lowest numbered line of the current text area. Since it 1is a
statement, it may be used in both direct mode and programs.

SAVE Save BASIC text space SA.

This statement will cause the current contents of the memoryv between
the start of the text area, given by ?218*256, and the value of TOP, to
be saved by the operating system with a specified name. The operating
system is not regquested to wait until the transfer is finished before
returning to the interpreter. Example.

SAVE"FRED"

SGET String get : o | _ S.

This statement reads a string from a rﬁnddm file. The form of the
statement is:

SGET <factor>, <expression>

where <factor> is the file handle returned by the FIN function. The
<expression> is evaluated to form an address, and bytes are taken from
the sequential input file and put in memory at consecutive locations
starting at that address, until a 'return' is read. The seguential
input file pointer will be moved on by the length of the string plus
one and the operating system will cause an error if the pointer passes
the end of the input file.

SHUT Finish with random file SH.

In the DOS this statement closes random input or output files. The
form of the statement is:

SHUT <factor>

where <factor> is the file handle found with either FIN or FOUT. If it
is an output file any information remaining in buffer areas in memory
is written to the file. If the <factor> has value zero, all current
sequential files will be closed. In the COS this statement causes an
Arror.

113

SPUT String put. . SP.

This statement writes a string to a random file. The form of the
instruction is:

SPUT <factor>, <string right>

where <factor> is the file handle returned by the FOUT function. Every
byte of the string, including the terminating 'return' character, is
sent to the file. In the DOS the random file seqguential pointer will
be moved on by the length of the string plus one, and the operating
system will cause an error if the length of the file exceeds the space
allowed. Example:

A=FOUT"FRED"
SPUT A , "THIS IS FILE FRED"

STEP Step specifier in FOR statement S.

This symbol is an optional parameter in the FOR statement, used to
specify step sizes other than the default of +1. It is followed by an
<expression> which is evaluated and its value stored along with the
other FOR parameters. See FOR for examples.

THEN Connective in IF statement omit

This symbol is an option in the IF statement; it can be followed‘by
any statement. : :

TO Limit specifier in FOR statement : TO

This symbol is required in a FOR statement to specify the limit which
is to be reached before the FOR ... NEXT loop can be terminated. See
FOR for examples.

TOP First free byte T.

This function returns the address of the first free byte after the end
of a stored BASIC program. Its value is adjusted during line editing
and by the END statement and LOAD command. It is vital for TOP to have
the correct value (set by END) before u51ng the line editor. See also
218 and END. .

UNTIL Terminator of DO ... UNTIL loop : . u.

This statement is part of the DO ... UNTIL repetitive loop. UNTIL
takes a <testable expression> and will return control to the character
after DO if this is zero (false), otherwise execution will continue
with the next statement. Examples:

DO PRINT"#";UNTIL 0; REM do forever

DO PRINT"#"; UNTIL COUNT=20; PRINT'
HEHH4ERAEHERARR SRS

DO INPUT"Calculation "A; PRINT"Answer is "A'; UNTIL A=12345678
Calulation ?22*3 :

Answer is 6
Calculation ?7A
Answer is 6

Calculation 212345678
Answer is 12345678

114

gUdddduddddddvddddddiddddddddaddddd

Chapter 16 - clé 28/7/80

16.0 BASIC CHARACTERS AND OPERATORS

This section lists all BASIC's special characters and operators. They
are followed by a description of the character or operator, and its
name enclosed in {} brackets. Lower case characters in <> brackets
refer to the syntax definition in Chapter 17.

16.1 Spec1a1 Characters

L1ne terminater {RETURN}

This character is used to terminate a statement or command, or a line
input to the INPUT statement, and as the terminator for strings.

| Cancel input ' , {CAN (CTRL—X)}

This character will, when typed from the keyboard delete the current
1nput buffer and give a new line.

Escape o ' ' C ' {ESC}

This character, typed on the keyboard w111 stop any BASIC program and
return to direct mode. BASIC checks for escape at every statement
terminator. ,

Separator : {space}

This character is stored intact to allow formating of programs. Space
may be used anywhere except:

1. In control words
2. After the # {hash} symbol :
3. Between line number and label.

It may be necessary to insert spaces to avoid ambiguity as, for
example, -in:
FORZ=V TOW STEPX

Here a separator character is needed between V and T, and similarly
between W and S, to eliminate the possibility of a function called
VTOWSTEP.

" String delimiter {double quote}

This character is used as the delimiting character whenever a string
is to be part of a BASIC statement (i.e. everywhere except when
inputting strings with an INPUT statement). If you wish to include "
in a string it should be written "". The simple rule for valid strings
is that they have an even number of " characters in them.

' New line : . - S _ {single quote}

This character may be used in PRINT and INPUT statements to generate a
new line by generatlng both CR and LF- codes. The value of COUNT will
be set to zero.

115

() " {round brackets}
These characters provide a means of overriding the normal arithmetic
priority of the operators in an <expression>. The contents of brackets
are worked out first, starting with the innermost brackets.

. Separator {comma }
This character is used to separate items in PRINT and INPUT
statements.

. ' ' {stop!}
This character is used to allow a shorter representation for some of
the key-words, thus using less memory space to store the program.

: Statement terminator ‘ {semi-colon}

This character is the statement terminator used in multi-statement
lines.

] Numeric field width ' {at}'

This character is a variable which controls the PRINT statement. It
specifies the number of spaces in which a number will be printed,
right-justified. If the field size is too small to print the number,
the number is printed in full without any extra spaces; thus field
sizes of 0 and 1 give the same result of minimum-width printing. The -
sign is printed in front of a negative number and counts towards the
number of characters in the number. On initial entry into BASIC, any
error, or following use of the LIST statement or assembler, @ is set
to 5. Example: :

@=5;PRINT1,12,123,1234,12345,123456'
1 12 123 123412345123456

a — z Labels

These characters provide a very fast means of transferring control
with the GOTO and GOSUB statements. A line may be labelled by putting
one of a-z immediately after the line number (no blanks are allowed
before the label). Transfer to a labelled line is achieved by a GOTO
or GOSUB statement followed by the required label. Example:

10a PRINT"looping™"'
20 GOTO a

>RUN

looping

looping

looping

16.2 Operators

1 Word indirection ' {pling}

This character provides word indirection. It can be both a binary and
a unary operator and appear on the left-hand side of an equal sign as
well as in <expression>s.

As a unary operator on the LEFT of an equals sign it takes a
<factor> as an argument and will treat this as an address. The
<expression> on the right of the equals sign is evaluated and then
stored, starting with the least significant byte, in the four
locations starting at this address. Example:

116

BUJVEUHI IR NIVl dddddddeddd

IA=#12345678

will store values in memory as follows:

A A+l BA+2° A+3

As a binary operator on the LEFT of an: equals sign it takes two
arguments; a <variable> on the left and a <factor> on the right. These
two values are added together to create the address, and the value is
stored at this address as above. Example:

AlB=$#12345678

As a unary operator in an <expression> it takes a <factor> as an
argument and will treat this as an address. The value is that
contained in the four bytes at this address. For example, if the
contents of memory are as follows:

iy ief el T —————— " —— — -y —

T . e e — ———————— —— ——— . —ir T

A A+l A+2 A+3

Then the value printed by
PRINT 1A

will be 24 (decimal).

As a binary operator in an <expression> it takes two arguments, a
<factor> on either side. The sum of these two values is used as the
address, as above. Example: :

PRINT A!B

Hexadecimal constant {hash or pound}

This character denotes the start of a hexadecimal value in
<factor>. It cannot be followed by a space and there is no check made
for overflow of the value. The valid hexadecimal characters are 0 to 9
and A to F, ‘ :

S String pointer {dollar}

This character introduces a pointer to a string; whenever it
appears it can be followed by an <expression>. In a PRINT statement,
if the pointer is less than 256, the ASCII character corresponding to
the value of the pointer will be printed. Dollar can be used on the
left of an equals sign as well as anywhere a string can be used. If
the only choice allowed is either a dollar or a string in double
quotes, then it is possible to omit the dollar. Strings may contain up
to 255 characters. Examples:

IFSA=$B........ string equality test

IFSA="FRED".... string equality test

SA="JIM"....... move string JIM to where A is pointing
$SA=$B....cccnan copy B's string to where A points
PRINTSA...ccc.. print the string A is pointing at
PRINT$A+1l...... print the string (A+l) is pointing at
PRINTS$64....... print ASCII character 64 i.e. @

117

% Remainder ‘ {percent}

This character is the operation of signed remainder between two
values. Its form is <factor a>%<factor b>. The sign of the result is
the same as the sign of the first operand.

& Hexadecimal /AND {ampersand}

Phis character has two distinct uses:

1. To print hexadecimal values in'the PRINT statement. Its form here
is as a prefix in front of the particular print item which is to be
printed in hexadecimal ‘

2. As the. operation of bitwise logical AND between two values. Its
form here is <factor a>&<factor b> and the result is a 32 bit word,
each bit of which is a logical AND between corresponding bits of the
operands. ' ' - '

* Multiply _ ' ~ {star}
This character is the operation of signed multiplication between two
32 bit values. Its form is <factor a>*<factor b>.
+ Add - {plus}
This character has two similar uses: '

1. As the unary operation "do not change sign". Its form here is
+<factor>

2. As the operation of addition between two 32 bit values. Its form
here is <term a>+<term b>, ' '

- Subtract , | | fminus}

This character has two similar uses:

1. As the unary operation of negate. Its form here is -<factor>, and
the result is 0 - <factor> - .

2. As the operation of subtraction between two 32 bit values. Its form
here is <term a>-<term b> and the result is found by subtracting <term
b> from <term a>. o ' :

/ Divide {slash}

This character is the operation of signed division between two 32 bit
values. Its form is <factor a>/<factor b> and the result is found by
dividing <factor a> by <factor b>.

s Exclusive—-OR : . _ ' {colon}

This character is the operation of bitwise logical exclusive-OR
between two 32 bit <term>s. Its form is <term a>:<term b> and the
result is a 32 bit word each bit of which is the exclusive-OR of
corresponding bits in <term a> and <term b>.

< Less-than : | {1eft'triangu1ar bracket}

This character is the relational operator "less than" between two
<expression>s. Its form is <expression a> < <expression b> and it
returns a logical value, of 'true' if <expression a> is less than
<expression b> and 'false' otherwise, which can be tested by IF and
UNTIL statements. '

118

{

Had 8ISVl diaiydd

= Equals : {equal}
This character has two uses:

1. As the relational operator "equal to" between two <expressionds.
Its form is <expression a> = <expression b> and it returns a logical
value, of 'true' if <expression a> is equal to <expression b> and
'false' otherwise, which can be tested by IF and UNTIL statements

2. As the assignment operation "becomes". The object on the left-hand
side. is assigned the value of the right-hand side. There are three
similar uses of this: '

1. Arithmetic Example: :
<variable>=<expression> A=2 , e
<variable>!<factor>=<expression> AlJ=3
<variable>?<factor>=<expression> A?2J=4
t<factor>=<expression> o 1J=5
?<factor>=<expression> . 2J=6

2. String movement , : :

: $<expression>=<string right> $A="FRED"

3. FOR statement o _
FOR<variable>=<expression> ... FOR A=0 TO ...

> Greater-than : . {right triangular bracket}

This character is the relational operator "greater than" between two
<expression>s. Its form is <expression a> > <expression b> and it
returns a logical value, of 'true' if <expression a> is greater than
<expression b> and 'false' otherwise, which can be tested by IF and
UNTIL statements. . L L

? 'Byte-indirection | - | " {query}

This character provides byte indirection. It can be either a binary or
a unary operator and appear on the left-hand side of an equals sign as
well as in <expression’>s,

As a unary operator on the LEFT of an equals sign it takes a
<factor> as an argument and will treat this as an address; the
<expression> on the right of the equals sign is evaluated and its
least significant byte is stored at that address. Example:

?A=#12345678
will store into memory as follows:

—— — — e

————————

As a binary operator on the LEFT of an equals sign it takes two
arguments, a <variable> on the left and a <factor> on the right. These
‘two values are added together to create the address where the value
will be stored as above. Example: '

A?B=#12345678

As a unary operator in an <expression> it takes a <factor> as an
argument and will treat this as an address:; the value is a word whose

' most significant three bytes are zero and whose least significant byte’
is the contents of that address. Example:

"PRINT ?A
119

As a binary operator in an <expression> it takes two arguments, a
<factor> on either side. The sum of these two values is the address
used as above. Example :

PRINT A?B

| " OR ' - ' : {1nverted backslash}

This character is the binary operation of bitwise logical OR between
two 32 bit <term>s. Its form is <term a>|<term b> and the result is a
32 bit word each bit of which is an OR operation between corresponding
bits of <term a> and <term b>.

< Not equal ' {léft &-right.triangular brackets}

This symbol is the relational operator "not equal to" between two
<expression>s. Its form is <expression a> <> <expression b> and it
returns a logical value, of 'true' if <expression a> is not equal to
{expression b> and 'false' otherwise, which can be tested by IF and
UNTIL statements.

<= Less or equal ; fleft triangular bracket, equal}

This symbol is the relational operator "less than or equal" between
two <expression>s. Its form is <expression a> <= <expression b> and it
returns a logical wvalue, of 'true' if <expression a> is less than or

equal to <expression b> and 'false' otherwise, which can be tested by
~ IF and UNTIL statements.

D= Greater or equal - {right triangular bracket, equal}

This symbol is the relational operation "greater than or equal to"
between two <expression>s. Its form is <expression a> >= <expression
b> and it returns a logical value, of 'true' if <expression a> is
greater than or equal to <expression b> and 'false' otherwise, which
can be tested by IF and UNTIL statements. '

120

Hdd IS8V ddddddadddidady

‘Chapter 17 - cl7 28/7/80

17.0 FORMAL SYNTAX DEFINITION

This syntax definition is written in B.N.F., or Backus-Naur Form, with
some additions. In the places where a proper definition in B.N.F.
would be far too long, a description has been used. The rules are:

Things in triangular <> brackets are defined things, "syntactic
entities", everything.else is itself '

The ::= symbol is read as "is defined" _

The | sign is read as OR: one of the alternatives must be true
Concatenation of things is read as “followéd'by"

The ~ sign is read as "any number of"

The {} brackets allow concatenations to be grouped together.

17.1.1 Basic Symbols

I "4 s % & " ()Y*+,-./0123456789:;<=>?@ABC
DEFGHIJRKLMNOPOQRSTUVWXYZabedefghiijkl1
mnopgrstuvwxyz]|[| < <= >= ABS AND END EXT FIN FOR GET

LEN LET NEW PTR PUT REM RND RUN TOP BGET BPUT FOUT GOTO LINK LIST LOAD
NEXT SAVE SGET SHUT SPUT STEP THEN COUNT GOSUB INPUT PRINT UNTIL
RETURN '

No multi-character basic symbols may include blanks; otherwise
blanks may be used freely to improve the readability of the program.
The character '.' can be used to provide a shorter representation of
all multi-character basic symbols.
<asciic>::={ascii characters excluding carriage return}
<digit>::=0]1|2]3]4|5]|6|7|8]|9
<hex digit>::=<digit>|A|B|C|D|E|F

<positive number>::=<digit><digit>”
such that <positive number> is less than 2147483648

<hex number>::=<hex digit><hex digit>”~
<integer field size>::=@

<p-variable>::=<integer field size>|A|B|CID[E|F|G|H|I|J[RIL|M|N|O|P]|Q
IRls|Tlolv|wix|Y|z

<variab1e>::=<p—variable>{charactér which is not <p-variable> or .}
<label>::=alblcl|d|e|flglh|ililk|lIm|n|olplalr]|s|tlulv]w|x]|ylz
<conjunction>::=AND |OR

<relation operation>::=<[>|<=]>=|=|<>

121

<expression operator>::=+]|-|]|]|: -

<term operator>::=*|/|s|&|!]|?

<factor>::=+<unary plus>|*<unary plus> [<unary plus>

<unary plus>::=<variable>|<positive number>|#<hex number> |
(<testable expression>)|!<factor>|?<factor>|TOP|COUNT
[RND | ABS<factor>|LEN<factor>|CH<string right>
|PTR<factor>|EXT<factor>|GET<factor>|BGET<factor> |
FIN<string right>|FOUT<string right>

<term>::=<factor>{<term operation><factor>}"

<expression>::=<term>{<expression operator><term>}"

<relnl expression>::=<expression>|<expression><relation operation>
<exression>|$<expression>=<string right>

<{testable expression>::=<relnl expression>{<conjunction>
<relnl expression>}"

<delimit quote>::="{any ascii character not a l.'}

~<string right>::=<expression>|$<expression>|“<asciic>“<delimit quote>

<sd>::=<statement delimiter>::={carriage return}|;

<working let>::={f{<variable>|!<factor>|?<factor>I<variable>!<factor>]
<variable>?<factor>}=<expression>} |$<expression>=
<string right>}<sd>

<let statement>::=LET<working let><sd>|<working let><sd>

<printable string>::={'|["<asciic>"<delimit gquote>}"

<input section>::=<printable'string>{<variable>l$<expression>I{null}}

<input statement>::=INPUT<input section>{,<input section>}”<sd>

<return statement>::=RETURN<sd>

<new command>::=NEW<sd>

<link statement>::=LINK<factor><sd>

<0S statement>::=*<asciic>”

<go entity>::=<label>|<factor>

<goto statement>::=GOTO<go entity><sd>

<gosub statement>::=GOSUB<go entity><sd>

<end statement>::=END<sd>

<do statement>::=DO

<until statement>::=UNTIL<testable expression><sd>

122

A P I O S U A U L A BN U

f

<next statement>::=NEXT<sd>|NEXT<variable><sd>

<half for>::=FOR<variablé>=<expressioh)TO{expression>

<for statement>::=<half for><sd>|<ha1f for><STEP<expression><sd>

<{save statement>::=SAVE<string right><sd>

<load command>::=LOAD<string right><sd>

{run statement);:=RUN<sd>.

<list command>::=LIST<sd>|LIST<positive n&mber><sd>|
LIST,<positive number><sd>|LIST<positive number>,<sd> |
LIST<positive number>,<positive number><sd>

<if statement>::=IF<£éstable-expression)fTHEN<statement>|<statement>}

<print comma>::={nothing, if possible}],

<print statement>::=PRINT{<printable string>{<expression> |
$<expression>| {nothing}}<print comma>}"*<sd>

<enter line command>::=<posgitive number><asciic>” {carriage return}_
<put statement>::=PUT<fact9r>,<expression><sd>

<bput statement>::=BPUT<factor>,<expression><sd>

<sput statement>::=SPUT<factor>,<string right><sd>

<sget statement>::=SGET<factor>,<expression><sd>

<ptr statément>::=PTR<factor>=<expression><sd>

<null statement>::;=<sd>

123

r-lrll-mlmr LrlnlmnrEriml_«iﬂiﬁlﬁiﬂf'kl U 1 S LY T) LA U LT A Y T Y

Chapter 18 - cl8 28/7/80

18.0 ERROR CODES

The following is a list of all 4K BASIC errors. Note that it is
possible to obtain errors not on this list by executing a BRK in a

machine-code program, Or using a BASIC extension.

18 Too many DO statements, UNTII. with no DO

The largest permitted number of nested DO ... UNTIL loops is 15. This
1imit has been exceeded.

An UNTIIL statement was encountered without a DO being active. Example:

20 IF A=l DO A=A+l
30 UNTIL A=3 (if A<>1 the DO is not executed)

29 Unknown or missing function

The statement contains a sequence of characters which are not the name
of a function. Example: :

10 J=RAN+10 (where RND was intended).
20 FPRINT S$A {string variables not permitted in FPRINT)

31 RETURN without GOSUB, Too many GOSUBs, Line not found
A RETURN was found in the main program. RETURN is only meaningful in a
subroutine.

mhe largest permitted depth of subroutine nesting is 15. This error
means that more than 11 GOSUB statements have been executed without
matching RETURN statements. Example:

10 GOSUB 10

20 END

The line number specified in a GOTO or GOSUB was nct found. Example:
10 GOTO 6
15 N=6; GOTO N (where there is no line 6)

91 No hexadecimal number after '#'

The characters immediately following the "4' symbol must be legal
hexadecimal characters 0-9 or A-F. Spaces are not permitted. Example:

10 PRINT #J

94 Unknown command; invalid statement terminator; missing END
GOSUB without RETURN; FOR without NEXT '

The statement has not been recognised as a legal BASIC statement. The
error may also be caused by an illegal charecter after a valid
statement, or by an attempt to execute past the end of the program.
Example:

10 LIST (LIST is not allowed in a program)

125

20 s A=B {no space permitted between label and line number)

The GOSUB statement, when used in direct mode, must be followed by a
semicolon. Example:

GOSUB 10

The FOR statement was used in direct mode without a NEXT statement.

109 Number too large, Attempt to use variable in LIST

Attempt to enter a number which is too large to be represented in
BASIC. Example: '

20 J=9999999999
Error also occurs if the:largest negative number is entered:
30 J=-2147483648

even though this number can be represented internally. To input this
number, use the hexadecimal form #80000000.

The LIST command may only be used with constants as its arguments.,
Example:

LIST A&,B

111 Missing variable in FOR; too many FOR statements

The control variable in a FOR ... NEXT loop must be one of the simple
variables A to Z. Example:

35 FOR IC=1 TO 10

" The maximum permitted number of nested FOR ... NEXT loops is 15; this

number has been exceeded.

127 Label not found

A label, a-z, was specified in a GOTO or GOSUB, but no statement
starting with that label was found. Example:

40 GOTO s

129 Division by =zero
A number was divided by zero. Example:
10 J=J3/(A-B) (where A and B were equal)

159 Unmatched quotes in PRINT or INPUT

Strings in PRINT statements, or entered in INPUT statements, should
have an even number of '"' quotation marks. Example:

PRINT *THIS IS A QUOTE:""

174 Significant item missing or malformed

An unexpected character was encountered during the interpretation of a
statement. Example:

10 GOTO 20 (O mistyped as zero; should be GOTO)
20 FOR J TO 4 ({expected '=' after J)
30 FOR J=1 STEP 1 TO 4 (order should be TO ... STEP)

126

i pr— o w2 A

LU L U L B UL e 100 U LT 31 T U U U U A\ AR A BRI 1

200 Unmatched quotes in string

Strings appearing in a program should have an even number of '*"!
quotation marks.

230 REXT without matching FOR

If a control variable is specified in a NEXT statement then the

variable must match the control variable in the corresponding FOR
statement., Example:

10 FOR N=1 TO 10
20 FOR J=1 TO 10
30 PRINT "*"

40 NEXT N

50 NEXT J

A NEXT statement was encountered without any FOR statement being
active.

127

